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Solution of Problem 37

By definition: F: Y? = X?®+aX + b with a,b € K and A = —16(4a® + 27b%) # 0 describes
an elliptic curve.

a) Here: £:Y?=X3+ X +1,ie.,a=0=1, K =F;. Then,
A = —16(4a® +27b*) = —16(4 +27)=5-3=1#0 mod 7.
It follows that E' is an elliptic curve in ;.

b) We use the following table to determine the points.

z 27V 22 2 142428
0 - 0 O 1
1 1 1 1 3
2 4 4 1 4
3 5 2 6 3
4 2 2 1 6
5 3 4 6 5
6 6 1 6 6

It follows from the third column that,
Y2e{0,1,2,4} = A,
and from the last column that
1+ X +X*c{1,3,4,5,6} =B.

Furthermore,

C=ANB={1,4}.
WithY2=1<Ye{l,6}and 1+ X+ X3 =1< X =0

= (0,1),(0,6) € E(F;).
WithY?=4oYe {25 and 1+ X + X3 =4& X =2

= (2,2),(2,5) € E(F7).



We can determine the set of all points on E,
E(F7) ={0,(0,1),(0,6),(2,2),(2,5)} .
For the trace t it holds
#EF,)=q+1—t.
Here, ¢ = 7, and #E(F;) =5, so

=7T+1-tet=3.
Note (Hasse): t < 2,/q =27~ 5.3

c) With the group law addition, E(FF7) is a finite abelian group. It holds ord(P) | #E(F7)
(Lagrange’s theorem). It follows for P # O : 1 < ord(P) =5, i.e., every P # O is a
generator. The addition for P = (x,y), P, = (z1,y1), P» = (22, 12) is defined by

i) P+O=P
(ii)) P+ (z,—y) =0 = —P = (x,—y)
(111) IfPl 75 :I:Pg = P3 = ({ﬂg,yg) P1—|—P2 with z = ;42 zll T3 = 2'2—1'1—172,
ys = z(x1 — x3) — Y1

(iv) If P, # =P, = 2P, = P+ P, = (x3,y3) with ¢ = 32%;@, x5 = & — 2,
ys = c(xy — x3) — 1.

Start with P = (0,1).

(iv)

2P =2-(0,1) = (2,5)
1 able
usingc:§:2*1T:bl4:»953:4252:»%:4(—2)—1;5 mod 7
(iif)
3P =1(2,5)+(0,1) = (2,2)
—4
using 2 = — =4-27'=2=03=4-0-2=2

-2
=y3=2(2—-2)—5=2 mod7
AP = (2,2) + (0,1) = (0,6)

5P = (0,6) + (0,1) £ 0
6P =0+ (0,1) 20,1



Solution of Problem 38

a) E.p:y*>=2%+axr+bwith a,b € Fy, P = (1,1), P, = (6,2)

P=1=14a+bsa+b=0a=—-b mod7
Po=4=6—-6b+bs5b=2<b=6=a=1 mod7
=y=2"+2+6

Calculate A = —16(4a® +270*) =54+ (-1)-1) =15=1# 0 mod 7. It follows
E, ¢ is an eliptic curve over Fr.

b) Eﬁ’l . y2 = ZES + 62 + 1. With
A= —-16(4a® +270*) =5(4- (-1)* -1-1)=3#0 mod 7

is Fg 1 an elliptic curve over [F;.

r 22 1> 6r 2> +6x+1
O 0 0 0 1
1 1 1 6 1
2 4 1 5 0
3 2 6 4 4
4 2 1 3 5
5 4 6 2 2
6 1 6 1 1

=y* € {0,1,2,4}
¥+ 62 +1¢€{0,1,2,4,5}
=Eo1(F7) = {(0,1),(0,6), (1,1),(1,6),(2,0), (3,2), (3,5),
(5,3),(5,4),(6,1),(6,6),0}
#Es 1 (F7) = 12

The solutions for the inverses are

Note: #EG_l(IF?) =q+ l—tet=7T4+1- #E@J(F'y) =8—-12=—4
c) It holds ord(P)|#Es1(F7) = 12 = ord(P) € {1,2,3,4,6,12} (c.f. Lagrange’s theo-

rem).



d) As just observed, the order of the subgroup generated by @ = (1,1) may be ord(Q) €
{1,2,3,4,6,12}. We will eliminate one element after another from the set until we
reach ord(Q) = 12. The conclusion will be that ) is a generator.

Q# 0= ord(Q) € {2,3,4,6,12}
4@Q) # O (known from exercise) = ord(Q) € {2,3,6,12}

Calculate 2Q).
2Q = (1,1) + (1,1) = (x,y), with

-1 2
3xl—|—a> g = (3 2+6> Ly

=
:( ) —2=(9-4°-2=1"-2=
-

1-
= 2Q = (6, )
Let ord(Q) = 2, then 4Q = O, a contradiction = ord(Q) € {3, 6, 12}

Q +2Q # O (see inverses above) = ord(Q) € {6,12}
2Q + 4Q # O (see inverses above) = ord(Q) = 12

We conclude that @) is a generator.



Solution of Problem 39

a) EQZY2:X3+(IX+11HF13.

a=2
A= —16(4a® +27b*) = 10(4-2° +27) =10-59=5#0 mod 13

= Fj is an elliptic curve.

b)
0P =0
1P = (0,1)
2P = (0,1) + (0,1) = (1,11)

2
using:v3:<w> —2-0=(2-271)?=1
2.1

y3=1-(0—-1)—1=-2=11

3P = (1,11) 4+ (0,1) = (8, 10)

1—11\2

0—1
ys = 36(1 —8) — 11 = 10

4P = (8,10) + (0,1) = (2,0)

usingx3:< —1-0=(3-12*-1=36*-1=38

c) (P) € {0,(0,1),(1,11),(8,10),(2,0),(0,12),(1,2),(8,3)}, where (0,1) = —(0,12),
(1,11) = —(1,2), (8,10) = —(8,3) and (2,0) = —(2,0). We start with the five points
calculated earlier. Then we add the inverse elements, as they must be elements of the
subgroup. With #(P) = #E(F3) is P a cyclic generator of order #(P) = 8.

Note: equivalent solutions are possible.
d) With b; =iP, a=jm+i, gj =Q — jmP
bi=g;,iP=0Q—jmP & Q=(_+jmP & Q=aP
© + myj covers all numbers between 0,...,q — 1.

e) The babysteps have already been computed. Compute giantsteps: @ — jmP until
Q — jmP =P for some ¢ with j =0,...,m — 1.

7=0:(8,3)—0(2,0) = (8,3)
j=1:(83)—(2,0)=(83)+(2,0)=(0,1)=P
with 23 = (2:2>2—8—2:(10-2)2—10:0
ys =20(8 —0) —3 =1



=j=1:1=1
=k=1+m=14+1-4=5
Q =5P = 5(0,1) = (8,3)

Check:

5P = 4P+ P = (2,0) + (0,1) = (8,3)

) (1—0
using r3 = | ——
0—2

y3=(1-6)(2—8)—0=6-7T—0=42=3

2
) 1-0=16>-2=38



