Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 1
 - Proposed Solution -

Friday, October 27, 2017

Solution of Problem 1

a) The public parameters and the received ciphertext are:

- $e=d^{-1} \bmod \varphi(n)$,
- $n=p q$,
- $c=m^{e} \bmod n$.

The plaintext m is not relatively prime to n, i.e., $p \mid m$ or $q \mid m$ and $p \neq q$.
Hence, $\operatorname{gcd}(m, n) \in\{p, q\}$ holds. The $\operatorname{gcd}(m, n)$ can be easily computed such that both primes can be calculated by either $q=\frac{n}{p}$ or $p=\frac{n}{q}$.
The private key d can be computed since the factorization of $n=p q$ is known.

$$
d=e^{-1} \quad \bmod \varphi(p q)=e^{-1} \quad \bmod (p-1)(q-1) .
$$

This inverse is computed using the extended Euclidean algorithm.
b) m, n have common divisors.

The number of relatively prime numbers to n are $\varphi(n)=(p-1)(q-1)=p q-(p+q)+1$.

$$
\mathrm{P}(\operatorname{gcd}(m, n)=1)=\frac{\varphi(n)}{n-1} .
$$

The complementary probability is computed by:

$$
\begin{aligned}
P=\mathrm{P}(\operatorname{gcd}(m, n) \neq 1) & =1-\frac{\varphi(n)}{n-1}=\frac{n-1-\varphi(n)}{n-1} \\
& =\frac{p q-p q+p+q-2}{p q-1}=\frac{p+q-2}{p q-1} .
\end{aligned}
$$

c) $n: 1024$ Bits $\Rightarrow p \approx \sqrt{n}=2^{512}, q \approx \sqrt{n}=2^{512}$. From (b) we compute:

$$
P=\frac{2^{512}+2^{512}-2}{2^{1024}-1}=\frac{2^{513}-2}{2^{1024}-1} \approx 2^{-511}=\left(2^{-10}\right)^{51} 2^{-1} \approx\left(10^{-3}\right)^{51} \frac{5}{10}=5 \cdot 10^{-154}
$$

In general: $n=2^{k}, p, q \approx 2^{\frac{k}{2}}$ for k Bits.

$$
P=\frac{2^{\frac{k}{2}}+2^{\frac{k}{2}}-2}{2^{k}-1}=\frac{2^{\frac{k}{2}+1}-2}{2^{k}-1} \approx 2^{\frac{k}{2}+1} 2^{-k}=2^{-\frac{k}{2}+1} .
$$

Thus, the probability that m and n are coprime is marginal, if n has sufficiently many bits.

Solution of Problem 2

a) $\varphi(n)=(u-1)(v-1)$, since u and v are distinct and prime.

$$
x^{\varphi(n) / 2} \equiv x^{(u-1)(v-1) / 2} \equiv\left(x^{u-1}\right)^{(v-1) / 2} \equiv 1^{(v-1) / 2} \equiv 1 \quad(\bmod u)
$$

Since v is an odd prime, it holds $2 \mid(v-1)$ so that $(v-1) / 2$ is an integer.
(Remark: Note that $\left(x^{\frac{1}{2}}\right)^{\varphi(n)}(\bmod n)$ is not defined!)
With analogous arguments, $x^{\varphi(n) / 2} \equiv 1 \bmod v$ is computed.
b) Since, u and v are coprime, we may apply the Chinese Remainder Theorem (solution is $\left.r \equiv x^{\varphi(n) / 2} \bmod n\right)$:

$$
\begin{aligned}
x^{\varphi(n) / 2} & \equiv 1 \quad(\bmod u), \\
x^{\varphi(n) / 2} & \equiv 1 \quad(\bmod v), \\
M & =p q, \\
M_{1} & =v, y_{1}=v^{-1} \quad \bmod u, \\
M_{2} & =u, y_{1}=u^{-1} \quad \bmod v \\
r & =\left(1 \cdot v \cdot\left(v^{-1} \quad \bmod u\right)+1 \cdot u \cdot\left(u^{-1} \quad \bmod v\right)\right) \quad(\bmod u \cdot v) \\
& =\left(v\left(v^{-1} \quad(\bmod u)\right)+u\left(u^{-1} \quad(\bmod v)\right) \quad(\bmod u \cdot v)\right. \\
& =1 \quad, \text { from definition of } \operatorname{gcd}(u, v)=1
\end{aligned}
$$

Note that since $\operatorname{gcd}(u, v)=1$ holds, it follows from the Extended Euclidean Algorithm, that $u x+v y=\operatorname{gcd}(u, v)=1$. The unique solutions for x and y are $x \equiv u^{-1} \bmod v$ and $y \equiv v^{-1} \bmod u$. (cf. lecture section 'The Extended Euclidean Algorithm')
c) If $e d \equiv 1\left(\bmod \frac{1}{2} \varphi(n)\right)$ it follows that:

$$
\begin{aligned}
e d & =1+\frac{1}{2} \varphi(n) k, k \in \mathbb{Z}, \\
\Leftrightarrow x^{e d} & \equiv x^{1+\frac{1}{2} \varphi(n) k} \\
& \equiv x\left(x^{\frac{1}{2} \varphi(n)}\right)^{k} \\
& \equiv x \cdot 1^{k} \equiv x \quad(\bmod n)
\end{aligned}
$$

Solution of Problem 3

Decipher $m=\sqrt{c} \bmod n$ with $c=1935$.

- Check $p, q \equiv 3 \bmod 4 \checkmark$
- Compute the square roots of c modulo p and c modulo q.

$$
\begin{aligned}
k_{p} & =\frac{p+1}{4}=17, \quad k_{q}=\frac{q+1}{4}=18, \\
x_{p, 1} & =c^{k_{p}} \equiv 1935^{17} \equiv 59^{17} \equiv 40 \quad \bmod 67, \\
x_{p, 2} & =-x_{p, 1} \equiv 27 \bmod 67, \\
x_{q, 1} & =c^{k_{q}} \equiv 1935^{18} \equiv 18^{18} \equiv 36 \quad \bmod 71, \\
x_{q, 2} & =-x_{q, 1} \equiv 35 \quad \bmod 71 .
\end{aligned}
$$

- Compute the resulting square root modulo n. $m_{i, j}=a x_{p, i}+b x_{q, j}$ solves $m_{i, j}^{2} \equiv c$ $\bmod n$ for $i, j \in\{1,2\}$. We substitute $a=t q$ and $b=s p$. Then $t q+s p=1$ yields $1=17 \cdot 71+(-18) \cdot 67=t q+s p$ from the Extended Euclidean Algorithm.

$$
\begin{aligned}
& \Rightarrow a \equiv t q \equiv 17 \cdot 71 \equiv 1207 \quad \bmod n \\
& \Rightarrow b \equiv-s p \equiv-18 \cdot 67 \equiv-1206 \quad \bmod n .
\end{aligned}
$$

The four possible solutions for the square root of ciphertext c modulo n are:

$$
\begin{aligned}
& m_{1,1} \equiv a x_{p, 1}+b x_{q, 1} \equiv 107 \quad \bmod n \Rightarrow 0000001101011, \\
& m_{1,2} \equiv a x_{p, 1}+b x_{q, 2} \equiv 1313 \quad \bmod n \Rightarrow 0010100100001, \\
& m_{2,1} \equiv a x_{p, 2}+b x_{q, 1} \equiv 3444 \quad \bmod n \Rightarrow 0110101110100, \\
& m_{2,2} \equiv a x_{p, 2}+b x_{q, 2} \equiv 4650 \quad \bmod n \Rightarrow 1001000101010 .
\end{aligned}
$$

The correct solution is m_{1}, by the agreement given in the exercise.

Solution of Problem 4

a) Given $x \equiv-x \bmod p$, prove that $x \equiv 0 \bmod p$.

Proof. The inverse of 2 modulo p exists. Then,

$$
\begin{aligned}
& -x \equiv x \quad \bmod p \\
& \Leftrightarrow \quad 0 \equiv 2 x \quad \bmod p \\
& \Leftrightarrow \quad 0 \equiv x \quad \bmod p .
\end{aligned}
$$

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses $p=q$.
i) Alice calculates $n=p^{2}$ and sends n to Bob.
ii) Bob calculates $c \equiv x^{2} \bmod n$ and sends c to Alice. With high probability $p \nmid x \Leftrightarrow$ $x \not \equiv 0 \bmod p$ (therefore, Bob almost always loses).
iii) The only two solutions $\pm x$ are calculated by Alice (see below) and sent to Bob. Bob cannot factor n, as

$$
\operatorname{gcd}(x-(\pm x), n)=\left\{\begin{array}{l}
\operatorname{gcd}(0, n)=n \\
\operatorname{gcd}(2 x, n)=\operatorname{gcd}\left(2 x, p^{2}\right)=1
\end{array}\right.
$$

Alice always wins.
c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be accused of cheating. Bob can factor n by calculating $p=\sqrt{n}$ as a real number and win the game.

Note: The two solutions $\pm x$ to $x^{2} \equiv c \bmod p^{2}$ can be calculated as follows.
Let p be an odd prime and $x, y \not \equiv 0 \bmod p$. If $x^{2} \equiv y^{2} \bmod p^{2}$, then $x^{2} \equiv y^{2} \bmod p$, so $x \equiv \pm y \bmod p$.

Let $x \equiv y \bmod p$. Then

$$
x=y+\alpha p .
$$

By squaring we get

$$
\begin{aligned}
& x^{2}=y^{2}+2 \alpha p y+(\alpha p)^{2} \\
\Rightarrow & x^{2} \equiv y^{2}+2 \alpha p y \quad \bmod p^{2} .
\end{aligned}
$$

Since $x^{2} \equiv y^{2} \bmod p^{2}$, we obtain

$$
0=2 \alpha p y \quad \bmod p^{2} .
$$

Divide by p to get

$$
0=2 \alpha y \quad \bmod p .
$$

Since p is odd and $p \nmid y$, we must have $p \mid \alpha$. Therefore, $x=y+\alpha p \equiv y \bmod p^{2}$. The case $x \equiv-y \bmod p$ is similar.
In other words, if $x^{2} \equiv y^{2} \bmod p^{2}$, not only $x \equiv \pm y \bmod p$, but also $x \equiv \pm y \bmod p^{2}$. At this point, we have shown that only two solutions exist.
Now, we show how to find $\pm x$, where $x^{2} \equiv c \bmod p^{2}$. As we can find square roots modulo a prime p, we have $x=b$ solves $x^{2} \equiv c \bmod p$. We want $x^{2} \equiv c \bmod p^{2}$. Square $x=b+a p$ to get

$$
\begin{aligned}
b^{2}+2 b a p+(a p)^{2} & \equiv b^{2}+2 b a p \equiv c \quad \bmod p \\
\Rightarrow b^{2} & \equiv c \quad \bmod p
\end{aligned}
$$

Since $b^{2} \equiv c \bmod p$ the number $c-b^{2}$ is a multiple of p, so we can divide by p and get

$$
2 a b \equiv \frac{c-b^{2}}{p} \quad \bmod p
$$

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

$$
a \equiv \frac{c-b^{2}}{p} \cdot 2^{-1} \cdot b^{-1} \quad \bmod p
$$

Therefore, we have $x=b+a p$.
This procedure can be continued to get solutions modulo higher powers of p. It is the numberic-theoretic version of Newton's method for numerically solving equations, and is usually referred to as Hensel's Lemma.

Example: $p=7, p^{2}=49, c=37$. Then

$$
\begin{gathered}
b=c^{\frac{p+1}{4}}=37^{\frac{7+1}{4}}=37^{2} \equiv 4 \bmod p, \\
b^{-1} \equiv 2 \bmod p, 2^{-1} \equiv 4 \bmod p \\
a=\frac{c-b^{2}}{p} \cdot 2^{-1} \cdot b^{-1}=\frac{37-4^{2}}{7} \cdot 4 \cdot 2 \equiv 3 \quad \bmod p \\
x=b+a p=4+3 \cdot 7=25
\end{gathered}
$$

Check: $x^{2}=25^{2} \equiv 37=c \bmod p^{2}$.

