
Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 1
- Proposed Solution -

Friday, October 27, 2017

Solution of Problem 1

a) The public parameters and the received ciphertext are:

• e = d−1 mod ϕ(n),
• n = p q,
• c = me mod n.

The plaintext m is not relatively prime to n , i.e., p | m or q | m and p 6= q.
Hence, gcd(m,n) ∈ {p, q} holds. The gcd(m,n) can be easily computed such that both
primes can be calculated by either q = n

p
or p = n

q
.

The private key d can be computed since the factorization of n = p q is known.
d = e−1 mod ϕ(p q) = e−1 mod (p− 1)(q − 1).

This inverse is computed using the extended Euclidean algorithm.

b) m,n have common divisors.
The number of relatively prime numbers to n are ϕ(n) = (p−1)(q−1) = p q− (p+q)+1.

P(gcd(m,n) = 1) = ϕ(n)
n− 1 .

The complementary probability is computed by:

P = P(gcd(m,n) 6= 1) = 1− ϕ(n)
n− 1 = n− 1− ϕ(n)

n− 1
= p q − p q + p+ q − 2

p q − 1 = p+ q − 2
p q − 1 .

c) n : 1024 Bits ⇒ p ≈
√
n = 2512, q ≈

√
n = 2512. From (b) we compute:

P = 2512 + 2512 − 2
21024 − 1 = 2513 − 2

21024 − 1 ≈ 2−511 = (2−10)512−1 ≈ (10−3)51 5
10 = 5 · 10−154

In general: n = 2k, p, q ≈ 2 k
2 for k Bits.

P = 2 k
2 + 2 k

2 − 2
2k − 1 = 2 k

2 +1 − 2
2k − 1 ≈ 2 k

2 +12−k = 2− k
2 +1.

Thus, the probability that m and n are coprime is marginal, if n has sufficiently many
bits.



Solution of Problem 2

a) ϕ(n) = (u− 1)(v − 1), since u and v are distinct and prime.

xϕ(n)/2 ≡ x(u−1)(v−1)/2 ≡ (xu−1)(v−1)/2 ≡ 1(v−1)/2 ≡ 1 (mod u)

Since v is an odd prime, it holds 2|(v − 1) so that (v − 1)/2 is an integer.

(Remark: Note that (x
1
2 )ϕ(n) (mod n) is not defined!)

With analogous arguments, xϕ(n)/2 ≡ 1 mod v is computed.

b) Since, u and v are coprime, we may apply the Chinese Remainder Theorem (solution is
r ≡ xϕ(n)/2 mod n):

xϕ(n)/2 ≡ 1 (mod u),
xϕ(n)/2 ≡ 1 (mod v),

M = pq,

M1 = v, y1 = v−1 mod u,

M2 = u, y1 = u−1 mod v

r = (1 · v · (v−1 mod u) + 1 · u · (u−1 mod v)) (mod u · v)
= (v(v−1 (mod u)) + u(u−1 (mod v)) (mod u · v)
= 1 , from definition of gcd(u, v) = 1

Note that since gcd(u, v) = 1 holds, it follows from the Extended Euclidean Algorithm,
that ux + vy = gcd(u, v) = 1. The unique solutions for x and y are x ≡ u−1 mod v
and y ≡ v−1 mod u. (cf. lecture section ’The Extended Euclidean Algorithm’)

c) If ed ≡ 1 (mod 1
2ϕ(n)) it follows that:

ed = 1 + 1
2ϕ(n)k, k ∈ Z,

⇔ xed ≡ x1+ 1
2 ϕ(n)k

≡ x(x
1
2 ϕ(n))k

≡ x · 1k ≡ x (mod n)

Solution of Problem 3
Decipher m =

√
c mod n with c = 1935.

• Check p, q ≡ 3 mod 4X

• Compute the square roots of c modulo p and c modulo q.

kp = p+ 1
4 = 17, kq = q + 1

4 = 18,

xp,1 = ckp ≡ 193517 ≡ 5917 ≡ 40 mod 67,
xp,2 = −xp,1 ≡ 27 mod 67,
xq,1 = ckq ≡ 193518 ≡ 1818 ≡ 36 mod 71,
xq,2 = −xq,1 ≡ 35 mod 71.



• Compute the resulting square root modulo n. mi,j = axp,i + bxq,j solves m2
i,j ≡ c

mod n for i, j ∈ {1, 2}. We substitute a = tq and b = sp. Then tq + sp = 1 yields
1 = 17 · 71 + (−18) · 67 = tq + sp from the Extended Euclidean Algorithm.

⇒ a ≡ tq ≡ 17 · 71 ≡ 1207 mod n

⇒ b ≡ −sp ≡ −18 · 67 ≡ −1206 mod n.

The four possible solutions for the square root of ciphertext c modulo n are:

m1,1 ≡ axp,1 + bxq,1 ≡ 107 mod n⇒ 0000001101011,
m1,2 ≡ axp,1 + bxq,2 ≡ 1313 mod n⇒ 0010100100001,
m2,1 ≡ axp,2 + bxq,1 ≡ 3444 mod n⇒ 0110101110100,
m2,2 ≡ axp,2 + bxq,2 ≡ 4650 mod n⇒ 1001000101010.

The correct solution is m1, by the agreement given in the exercise.

Solution of Problem 4

a) Given x ≡ −x mod p, prove that x ≡ 0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

−x ≡ x mod p

⇔ 0 ≡ 2x mod p

⇔ 0 ≡ x mod p .

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p = q.

i) Alice calculates n = p2 and sends n to Bob.
ii) Bob calculates c ≡ x2 mod n and sends c to Alice. With high probability p - x⇔

x 6≡ 0 mod p (therefore, Bob almost always loses).
iii) The only two solutions ±x are calculated by Alice (see below) and sent to Bob.

Bob cannot factor n, as

gcd(x− (±x), n) =

gcd(0, n) = n

gcd(2x, n) = gcd(2x, p2) = 1
.

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p =

√
n as a real number and win

the game.



Note: The two solutions ±x to x2 ≡ c mod p2 can be calculated as follows.
Let p be an odd prime and x, y 6≡ 0 mod p. If x2 ≡ y2 mod p2, then x2 ≡ y2 mod p, so
x ≡ ±y mod p.
Let x ≡ y mod p. Then

x = y + αp .

By squaring we get

x2 = y2 + 2αpy + (αp)2

⇒ x2 ≡ y2 + 2αpy mod p2 .

Since x2 ≡ y2 mod p2, we obtain

0 = 2αpy mod p2 .

Divide by p to get
0 = 2αy mod p .

Since p is odd and p - y, we must have p | α. Therefore, x = y + αp ≡ y mod p2. The case
x ≡ −y mod p is similar.
In other words, if x2 ≡ y2 mod p2, not only x ≡ ±y mod p, but also x ≡ ±y mod p2. At
this point, we have shown that only two solutions exist.
Now, we show how to find ±x, where x2 ≡ c mod p2. As we can find square roots modulo a
prime p, we have x = b solves x2 ≡ c mod p. We want x2 ≡ c mod p2. Square x = b+ ap to
get

b2 + 2bap+ (ap)2 ≡ b2 + 2bap ≡ c mod p

⇒ b2 ≡ c mod p .

Since b2 ≡ c mod p the number c− b2 is a multiple of p, so we can divide by p and get

2ab ≡ c− b2

p
mod p .

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

a ≡ c− b2

p
· 2−1 · b−1 mod p .

Therefore, we have x = b+ ap.
This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’s Lemma.
Example: p = 7, p2 = 49, c = 37. Then

b = c
p+1

4 = 37
7+1

4 = 372 ≡ 4 mod p ,

b−1 ≡ 2 mod p , 2−1 ≡ 4 mod p ,

a = c− b2

p
· 2−1 · b−1 = 37− 42

7 · 4 · 2 ≡ 3 mod p

x = b+ ap = 4 + 3 · 7 = 25

Check: x2 = 252 ≡ 37 = c mod p2.


