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Solution of Problem 1

a)

b)

The public parameters and the received ciphertext are:
e c=d ' mod p(n),
® n=pg,
e ¢c=m° mod n.
The plaintext m is not relatively prime to n , i.e., p | mor ¢ | m and p # q.
Hence, ged(m, n) € {p, ¢} holds. The gcd(m,n) can be easily computed such that both

primes can be calculated by either ¢ = % or p= %.

The private key d can be computed since the factorization of n = p ¢ is known.
d=e' mody(pg) =e' mod (p—1)(g—1).

This inverse is computed using the extended Euclidean algorithm.

m,n have common divisors.

The number of relatively prime numbers to n are p(n) = (p—1)(¢—1) =pg—(p+q)+1.

p(n)
n—1

P(ged(m,n) =1) =
The complementary probability is computed by:
p(n) _n—1-yp(n)

P =P(ged(m,n) #1)=1—

n—1 n—1
_pg—pegtptqg—2 ptqg-2
pq—1 pqg—1

n: 1024 Bits = p ~ /n = 2°'2 ¢ ~ \/n = 2512, From (b) we compute:

2512 + 2512 -9 2513 -9
91024 _ 1 91024 _ |

A 2701 = (2710)5191 (10‘3)5115O =5-101"

pP=

In general: n = 2%, p, ¢ ~ 25 for k Bits.

k k Eiq
P= 22422 =2 22 =2 ~ 25 +l9—k — 9=5+1,
2k — 1 2k — 1
Thus, the probability that m and n are coprime is marginal, if n has sufficiently many
bits.




Solution of Problem 2

a) p(n) = (u—1)(v—1), since u and v are distinct and prime.
2PO/2 = Z=DE-1/2 = (=) @-D/2 = 10-D/2 = | (mod u)
Since v is an odd prime, it holds 2|(v — 1) so that (v — 1)/2 is an integer.
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(Remark: Note that (22)#™ (mod n) is not defined!)

With analogous arguments, 2#/2 = 1 mod v is computed.

b) Since, u and v are coprime, we may apply the Chinese Remainder Theorem (solution is
r = 29™/2 mod n):

2?2 =1 (mod u),

2#M/2 =1 (mod v),

M = pq,
M, =v,5y =v ' mod u,
My =u,y, = uw™' mod v

r=(1-v-(v' modu)+1-u-(u* modwv)) (modu-uv)
= (v(v™" (mod u)) +u(u"" (modv)) (mod u-wv)
=1 , from definition of ged(u,v) =1

Note that since ged(u,v) = 1 holds, it follows from the Extended Euclidean Algorithm,
that uz + vy = ged(u,v) = 1. The unique solutions for z and y are z = u~' mod v
and y = v~' mod u. (cf. lecture section "The Extended Euclidean Algorithm’)

c) If ed =1 (mod S¢(n)) it follows that:
ed =1+ 30(n)k, k € Z,
o ped = xl-i—%«p(n)k
= p(z27YE

=z-1"=2 (mod n)

Solution of Problem 3
Decipher m = /¢ mod n with ¢ = 1935.

e Check p,¢g =3 mod 4V

e Compute the square roots of ¢ modulo p and ¢ modulo q.

p+1 q+1
k=" =17 k== =18,
21 = =1935' = 59" =40 mod 67,
Tpo = —Tp1 =27 mod 67,

Te1 = =1935" = 18" =36 mod 71,

Tgo = —Tg1 =35 mod 71.



e Compute the resulting square root modulo n. m;; = ax,; + by, solves m7,; = ¢
mod n for i,7 € {1,2}. We substitute a = tq and b = sp. Then tq + sp = 1 yields
1=17-71+ (—18) - 67 = tq + sp from the Extended Euclidean Algorithm.

=a=1tqg=17-71=1207 mod n
=b=—-sp=-18-67=—-1206 mod n.

The four possible solutions for the square root of ciphertext ¢ modulo n are:

mi1 = az,; + bxrgy =107 mod n = 0000001101011,
M1 = azp1 + bxrgee = 1313 mod n = 0010100100001,
Mo = aZpo + bry; = 3444 mod n = 0110101110100,
Moo = aTp2 + bxyo = 4650 mod n = 1001000101010.

The correct solution is mq, by the agreement given in the exercise.

Solution of Problem 4
a) Given x = —z mod p, prove that z =0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

—r=x modp
& 0=2r modp
& 0=x modp.

]

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p=q.
i) Alice calculates n = p? and sends n to Bob.

ii) Bob calculates ¢ = 22 mod n and sends ¢ to Alice. With high probability p { z <
x # 0 mod p (therefore, Bob almost always loses).

iii) The only two solutions £z are calculated by Alice (see below) and sent to Bob.
Bob cannot factor n, as

ged(0,n) =n
ged(2x,n) = ged(2x,p?) =1

ged(x — (£x),n) = {

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p = /n as a real number and win
the game.



Note: The two solutions +x to 22 = ¢ mod p? can be calculated as follows.
Let p be an odd prime and z,y # 0 mod p. If 2> = %> mod p?, then 2? = y?> mod p, so
r = +y mod p.
Let x =y mod p. Then
r=y+ap.
By squaring we get
#* = y* + 2apy + (ap)?
= 22 = y? 4+ 2apy mod p?.

2 —

Since 22 = y* mod p?, we obtain

0=2apy mod p?.
Divide by p to get
0=2ay modp.
Since p is odd and p t y, we must have p | a. Therefore, x =y + ap =y mod p?. The case
= —y mod p is similar.
In other words, if 22 = y> mod p?, not only x = £y mod p, but also x = £y mod p?. At
this point, we have shown that only two solutions exist.

Now, we show how to find £z, where 22 = ¢ mod p?. As we can find square roots modulo a
prime p, we have x = b solves 22 = ¢ mod p. We want 2> = ¢ mod p?. Square x = b+ ap to
get

b? + 2bap + (ap)* = b* +2bap = ¢ mod p
=0 =c modp.
Since b*> = ¢ mod p the number ¢ — b? is a multiple of p, so we can divide by p and get

c— b?

2ab = mod p.

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:
c—b?

a= 271 b7 mod p.
p

Therefore, we have x = b + ap.

This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’s Lemma.

Example: p =17, p*> =49, ¢ = 37. Then

ptl T4+1

b=ct =371 =37"=4 modp,
b'=2 modp, 27'=4 mod p,
C_b2-2_1-b_1:37_42
P 7
r=b+ap=44+3-7=25

Check: 2% = 25% = 37 = ¢ mod p*.

a= +4-2=3 modp



