
Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 4
- Proposed Solution -

Friday, November 17, 2017

Solution of Problem 1
a) Having the following expression:

h : {0, 1}∗ → {0, 1}∗, k 7→
(⌊

10000
(

(k)10(1 +
√

5)/2−
⌊
(k)10(1 +

√
5)/2

⌋)⌋)
2
.

We want to obtain the upper bound in terms of bit length. Therefore, we will analyze
the expression:

α =
(

(k)10(1 +
√

5)/2−
⌊
(k)10(1 +

√
5)/2

⌋)
< 1

but it can be arbitrary close to 1
Hence now the expression is simpler and we can obtain the upper bound:

10000 (α) < 10000 ≤ 9999
Now applying the logarithm, we obtain the bit length:

log2(9999) ≈ 13.288 ≤ 14

b) We search for a collision:

k = 1 −→ (1 +
√

5)/2 = 1.6180
−→ (k)10(1 +

√
5)/2−

⌊
(k)10(1 +

√
5)/2

⌋
= 0.6180

Therefore, we need to search for a value x, s.t:
x(1 +

√
5)/2 = a+ 0.6180 + b

with a∈ Z, b < 0.0001
We create a while loop to obtain the value for the collision:
x = 2

while (0.618 > x((1 +
√

5)/2)−
⌊
x(1 +

√
5)/2

⌋
> 0.618 + 0.0001) do

x = x+ 1
end while

Obtaining a value of k = 10947, where
(h(1))10 = 6180

(h(10947))10 = 6180

since the values are equal, we obtain a collision.



Solution of Problem 2
Given: two hash functions with output length of 64 bits and 128 bits.

a) How many messages have to be created, such that the probability of a collision exceeds
0.86?
Birthday paradox: k objects, n bins, pk,n, the probability of “no collision”, is bounded
by

pk,n ≤ exp
(
−k(k − 1)

2n

)

⇒ 1− pk,n ≥ 1− exp
(
−k(k − 1)

2n

)
≥ p

⇔ exp
(
−k(k − 1)

2n

)
≤ 1− p

⇔ k2 − k + 2n loge (1− p)

=
(
k − 1

2 + 1
2
√

1− 8n loge (1− p)
)
·
(
k − 1

2 −
1
2
√

1− 8n loge (1− p)
)
≥ 0

With n = 264 ≈ 1.844 · 1019 and p = 0.86, we get k64 ≈ 8.517 · 109, and with n = 2128 ≈
3.403 · 1038, we get k128 ≈ 3.658 · 1019, where k64 and k128 denote the number of messages
needed to get a collision with probability of p = 0.86.

b) The following solution is an example and other solutions are possible. The main aspect
of this exercise is to show the growth in resources for generating collisions the longer
the hash function is.

Hardware resource 64 bit hash function 128 bit hash function
hash function executions k64 = 8.517 · 109 k128 = 3.658 · 1019

memory size k64 · 64 bits ≈ 63.5GiB k128 · 128 bits = 5.45 · 1011GiB
comparisons 0 + 1 + 2 + . . .+ (k64 − 1) 1

2k128 (k128 − 1) ≈ 6.69 · 1038

= ∑k64−1
i=0 i = 1

2k64 (k64 − 1)
≈ 3.63 · 1019



Solution of Problem 3

a) see script

b) The modified hash function h′ is not preimage resistant, since for any hash value y of
the form 0 ‖m, a preimage is m. Therefore, we can find a preimage for at least one half
of all possible hash values.

Next, we prove that h′ inherits a second-preimage and collision resistant from h. We
show that if we can find a collision or a second preimage for h′ , then we can easily do
so for h. Suppose:

∃x0 6= x1 : h′(x0) = h
′(x1).

Two cases:

a) First bit of h′(x0) is 0. Impossible as implies that x0 = x1

b) First bit of h′(x0) is 1. Then h
′(x0) = h

′(x1) a contradiction, as h is collision
resistant.

c) One can verify that for instance

h = (10101010, 00001111) = h(00001111, 10101010).

Notice that is easy to find other collision pairs like the previous one.

d) Correct signatures will be accepted, since:

sh = gzh = gα = X

e) It is possible to sign an arbitrary message without knowing α. We have from the
equation in the previous subtask that:

s = Xh−1

Given a message, anyone can hash it to get h, compute h−1 by the Extended Euclidean
Algorithm and then compute the signature using the user’s public key.


