

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Solution of Problem 1

Parameters: n = pq with $p, q \equiv 3 \mod 4$, and p, q secret primes. Each user chooses an arbitrary sequence of seeds $s_1, ..., s_K \in \{1, ..., n-1\}$, with $gcd(s_i, n) = 1$ and publishes: $v_i = (s_i^2)^{-1} \mod n$.

A public hash function is applied:

$$H: \{0,1\}^* \to \{(b_1,...,b_K) \mid b_i \in \{0,1\}\}$$

Signature generation:

- (i) A chooses an arbitrary value $r \in \{1, ..., n-1\}$ and calculates $x \equiv r^2 \mod n$. (witness)
- (ii) A calculates: $h(m, x) = (b_1, ..., b_k)$ (challenge) and afterwards $y \equiv r \prod_{j=1}^{K} s_j^{b_j} \mod n$ (response)
- (iii) The signature of m is (x, y): $A \rightarrow B: m, x, y$

Verification:

- (i) B calculates $h(m, x) = (b_1, ..., b_K)$. (challenge)
- (ii) B calculates $z \equiv y^2 \prod_{j=1}^{K} v_j^{b_j} \mod n$. (response)
- (iii) B accepts the signature if z = x holds.

Proof that this signature and verification scheme is correct:

$$z = y^2 \prod_{j=1}^K v_j^{b_j} \equiv \underbrace{r^2}_{\equiv x} \underbrace{\prod_{j=1}^K s_j^{2b_j} \prod_{j=1}^K v_j^{b_j}}_{\equiv 1} \equiv x \mod n. \blacksquare$$

Solution of Problem 2

a) The secret service (MI5) chooses an arbitrary seed $s \in \mathbb{Z}_n$ per iteration.

The MI5 calculates the quadratic residue $y \equiv s^2 \mod n$:

MI5 \rightarrow JB: y

JB calculates the four square roots of y modulo n using the factors p, q of n.

JB chooses a square root x:

JB \rightarrow MI5: x

The MI5 verifies that $x^2 \equiv y \mod n$.

Since JB has no information about s, he chooses the x with probability $\frac{1}{2}$, such that $x \not\equiv \pm s \mod n$.

If the MI5 receives such an x, n can be factorized:

$$y \equiv s^2 \equiv x^2 \mod n$$

$$\Rightarrow s^2 - x^2 \equiv 0 \mod n$$

$$\Rightarrow (s - x)(s + x) \equiv 0 \mod n.$$

The probability that JB always fails by sending $x \equiv \pm s \mod n$ in all 20 submissions is:

$$\frac{1}{2^{20}} = \frac{1}{1048576} \approx 10^{-6}$$

b) *Zero-knowledge property:* No information about the secret may be revealed during the response.

However, in this protocol it is even possible, that the full secret s is revealed. Hence, this is not secure a zero-knowledge protocol!

c) A passive eavesdropper E can only obtain the values x and y. E only knows the square roots $\pm x$ of y modulo n, which is useless in the next iteration. This knowledge is not sufficient to factorize n.

Solution of Problem 3

By definition: $E: Y^2 = X^3 + aX + b$ with $a, b \in K$ and $\Delta = -16(4a^3 + 27b^2) \neq 0$ describes an elliptic curve.

a) Here: $E: Y^2 = X^3 + X + 1$, i.e., $a = b = 1, K = \mathbb{F}_7$. Then,

$$\Delta = -16(4a^3 + 27b^2) = -16(4 + 27) \equiv 5 \cdot 3 \equiv 1 \neq 0 \mod 7$$

It follows that E is an elliptic curve in \mathbb{F}_7 .

b) We use the following table to determine the points. It follows from the third column that,

$$Y^2 \in \{0, 1, 2, 4\} = A$$
,

z	z^{-1}	z^2	z^3	$1 + z + z^3$
0	-	0	0	1
1	1	1	1	3
2	4	4	1	4
3	5	2	6	3
4	2	2	1	6
5	3	4	6	5
6	6	1	6	6

and from the last column that

$$1 + X + X^3 \in \{1, 3, 4, 5, 6\} = B$$
.

Furthermore,

$$C = A \cap B = \{1, 4\}.$$

With $Y^2 = 1 \Leftrightarrow Y \in \{1, 6\}$ and $1 + X + X^3 = 1 \Leftrightarrow X = 0$
 $\Rightarrow (0, 1), (0, 6) \in E(\mathbb{F}_7).$
With $Y^2 = 4 \Leftrightarrow Y \in \{2, 5\}$ and $1 + X + X^3 = 4 \Leftrightarrow X = 2$
 $\Rightarrow (2, 2), (2, 5) \in E(\mathbb{F}_7).$

We can determine the set of all points on E,

$$E(\mathbb{F}_7) = \{\mathcal{O}, (0,1), (0,6), (2,2), (2,5)\}.$$

For the trace t it holds

$$#E(\mathbb{F}_q) = q + 1 - t.$$

Here, q = 7, and $\#E(\mathbb{F}_7) = 5$, so

$$5 = 7 + 1 - t \Leftrightarrow t = 3$$
.

Note (Hasse): $t < 2\sqrt{q} = 2\sqrt{7} \approx 5.3$

- c) With the group law addition, $E(\mathbb{F}_7)$ is a finite abelian group. It holds $\operatorname{ord}(P) | \# E(\mathbb{F}_7)$ (Lagrange's theorem). It follows for $P \neq \mathcal{O}$: $1 < \operatorname{ord}(P) = 5$, i.e., every $P \neq \mathcal{O}$ is a generator. The addition for P = (x, y), $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ is defined by
 - (i) $P + \mathcal{O} = P$
 - (ii) $P + (x, -y) = \mathcal{O} \Rightarrow -P = (x, -y)$
 - (iii) If $P_1 \neq \pm P_2 \Rightarrow P_3 = (x_3, y_3) = P_1 + P_2$ with $z = \frac{y_2 y_1}{x_2 x_1}$, $x_3 = z^2 x_1 x_2$, $y_3 = z(x_1 - x_3) - y_1$.
 - (iv) If $P_1 \neq -P_1 \Rightarrow 2P_1 = P_1 + P_1 = (x_3, y_3)$ with $c = \frac{3x_1^2 + a}{2y_1}$, $x_3 = c^2 2x_1$, $y_3 = c(x_1 x_3) y_1$.

Start with P = (0, 1).

$$2P = 2 \cdot (0,1) \stackrel{(\text{iv})}{=} (2,5)$$

using $c = \frac{1}{2} = 2^{-1} \stackrel{\text{Table}}{=} 4 \Rightarrow x_3 = 4^2 \equiv 2 \Rightarrow y_3 = 4(-2) - 1 \equiv 5 \mod 7$
$$3P = (2,5) + (0,1) \stackrel{(\text{iii})}{=} (2,2)$$

using $z = \frac{-4}{-2} = 4 \cdot 2^{-1} = 2 \Rightarrow x_3 = 4 - 0 - 2 = 2$
 $\Rightarrow y_3 = 2(2-2) - 5 \equiv 2 \mod 7$
$$4P = (2,2) + (0,1) = (0,6)$$

$$5P = (0,6) + (0,1) \stackrel{(\text{ii})}{=} \mathcal{O}$$

$$6P = \mathcal{O} + (0,1) \stackrel{(\text{ii})}{=} (0,1)$$