Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 8
 - Proposed Solution -

Friday, December 22, 2017

Solution of Problem 1

Parameters: $n=p q$ with $p, q \equiv 3 \bmod 4$, and p, q secret primes.
Each user chooses an arbitrary sequence of seeds $s_{1}, \ldots s_{K} \in\{1, \ldots, n-1\}$, with $\operatorname{gcd}\left(s_{i}, n\right)=1$ and publishes: $v_{i}=\left(s_{i}^{2}\right)^{-1} \bmod n$.
A public hash function is applied:

$$
H:\{0,1\}^{*} \rightarrow\left\{\left(b_{1}, \ldots, b_{K}\right) \mid b_{i} \in\{0,1\}\right\}
$$

Signature generation:
(i) A chooses an arbitrary value $r \in\{1, \ldots, n-1\}$ and calculates $x \equiv r^{2} \bmod n$. (witness)
(ii) A calculates: $h(m, x)=\left(b_{1}, \ldots, b_{k}\right)$ (challenge)
and afterwards $y \equiv r \prod_{j=1}^{K} s_{j}^{b_{j}} \bmod n($ response $)$
(iii) The signature of m is (x, y) :

$$
A \rightarrow B: m, x, y
$$

Verification:
(i) B calculates $h(m, x)=\left(b_{1}, \ldots, b_{K}\right)$. (challenge)
(ii) B calculates $z \equiv y^{2} \prod_{j=1}^{K} v_{j}^{b_{j}} \bmod n$. (response)
(iii) B accepts the signature if $z=x$ holds.

Proof that this signature and verification scheme is correct:

$$
z=y^{2} \prod_{j=1}^{K} v_{j}^{b_{j}} \equiv \underbrace{r^{2}}_{\equiv x} \underbrace{\prod_{j=1}^{K} s_{j}^{2 b_{j}} \prod_{j=1}^{K} v_{j}^{b_{j}}}_{\equiv 1} \equiv x \bmod n .
$$

Solution of Problem 2

a) The secret service (MI5) chooses an arbitrary seed $s \in \mathbb{Z}_{n}$ per iteration.

The MI5 calculates the quadratic residue $y \equiv s^{2} \bmod n$:

$$
\text { MI5 } \rightarrow \text { JB: } y
$$

JB calculates the four square roots of y modulo n using the factors p, q of n.
JB chooses a square root x :

$$
\text { JB } \rightarrow \text { MI5: } x
$$

The MI5 verifies that $x^{2} \equiv y \bmod n$.
Since JB has no information about s, he chooses the x with probability $\frac{1}{2}$, such that $x \not \equiv \pm s \bmod n$.
If the MI5 receives such an x, n can be factorized:

$$
\begin{aligned}
y \equiv s^{2} & \equiv x^{2} \quad \bmod n \\
\Rightarrow s^{2}-x^{2} & \equiv 0 \quad \bmod n \\
\Rightarrow(s-x)(s+x) & \equiv 0 \quad \bmod n .
\end{aligned}
$$

The probability that JB always fails by sending $x \equiv \pm s \bmod n$ in all 20 submissions is:

$$
\frac{1}{2^{20}}=\frac{1}{1048576} \approx 10^{-6} .
$$

b) Zero-knowledge property: No information about the secret may be revealed during the response.
However, in this protocol it is even possible, that the full secret s is revealed. Hence, this is not secure a zero-knowledge protocol!
c) A passive eavesdropper E can only obtain the values x and y. E only knows the square roots $\pm x$ of y modulo n, which is useless in the next iteration. This knowledge is not sufficient to factorize n.

Solution of Problem 3

By definition: $E: Y^{2}=X^{3}+a X+b$ with $a, b \in K$ and $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$ describes an elliptic curve.
a) Here: $E: Y^{2}=X^{3}+X+1$, i.e., $a=b=1, K=\mathbb{F}_{7}$. Then,

$$
\Delta=-16\left(4 a^{3}+27 b^{2}\right)=-16(4+27) \equiv 5 \cdot 3 \equiv 1 \not \equiv 0 \quad \bmod 7 .
$$

It follows that E is an elliptic curve in \mathbb{F}_{7}.
b) We use the following table to determine the points.

It follows from the third column that,

$$
Y^{2} \in\{0,1,2,4\}=A
$$

z	z^{-1}	z^{2}	z^{3}	$1+z+z^{3}$
0	-	0	0	1
1	1	1	1	3
2	4	4	1	4
3	5	2	6	3
4	2	2	1	6
5	3	4	6	5
6	6	1	6	6

and from the last column that

$$
1+X+X^{3} \in\{1,3,4,5,6\}=B
$$

Furthermore,

$$
C=A \cap B=\{1,4\} .
$$

With $Y^{2}=1 \Leftrightarrow Y \in\{1,6\}$ and $1+X+X^{3}=1 \Leftrightarrow X=0$

$$
\Rightarrow(0,1),(0,6) \in E\left(\mathbb{F}_{7}\right) .
$$

With $Y^{2}=4 \Leftrightarrow Y \in\{2,5\}$ and $1+X+X^{3}=4 \Leftrightarrow X=2$

$$
\Rightarrow(2,2),(2,5) \in E\left(\mathbb{F}_{7}\right) .
$$

We can determine the set of all points on E,

$$
E\left(\mathbb{F}_{7}\right)=\{\mathcal{O},(0,1),(0,6),(2,2),(2,5)\}
$$

For the trace t it holds

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t
$$

Here, $q=7$, and $\# E\left(\mathbb{F}_{7}\right)=5$, so

$$
5=7+1-t \Leftrightarrow t=3 .
$$

Note (Hasse): $t<2 \sqrt{q}=2 \sqrt{7} \approx 5.3$
c) With the group law addition, $E\left(\mathbb{F}_{7}\right)$ is a finite abelian group. It holds ord $(P) \mid \# E\left(\mathbb{F}_{7}\right)$ (Lagrange's theorem). It follows for $P \neq \mathcal{O}: 1<\operatorname{ord}(P)=5$, i.e., every $P \neq \mathcal{O}$ is a generator. The addition for $P=(x, y), P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ is defined by
(i) $P+\mathcal{O}=P$
(ii) $P+(x,-y)=\mathcal{O} \Rightarrow-P=(x,-y)$
(iii) If $P_{1} \neq \pm P_{2} \Rightarrow P_{3}=\left(x_{3}, y_{3}\right)=P_{1}+P_{2}$ with $z=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{3}=z^{2}-x_{1}-x_{2}$, $y_{3}=z\left(x_{1}-x_{3}\right)-y_{1}$.
(iv) If $P_{1} \neq-P_{1} \Rightarrow 2 P_{1}=P_{1}+P_{1}=\left(x_{3}, y_{3}\right)$ with $c=\frac{3 x_{1}^{2}+a}{2 y_{1}}, x_{3}=c^{2}-2 x_{1}$, $y_{3}=c\left(x_{1}-x_{3}\right)-y_{1}$.

Start with $P=(0,1)$.

$$
\begin{aligned}
& 2 P=2 \cdot(0,1) \stackrel{(\text { iv })}{=}(2,5) \\
& \quad \text { using } c=\frac{1}{2}=2^{-1} \stackrel{\text { Table }}{=} 4 \Rightarrow x_{3}=4^{2} \equiv 2 \Rightarrow y_{3}=4(-2)-1 \equiv 5 \bmod 7 \\
& 3 P=(2,5)+(0,1) \stackrel{(\text { iii) }}{=}(2,2) \\
& \quad \text { using } z=\frac{-4}{-2}=4 \cdot 2^{-1}=2 \Rightarrow x_{3}=4-0-2=2 \\
& \quad \Rightarrow y_{3}=2(2-2)-5 \equiv 2 \bmod 7 \\
& 4 P=(2,2)+(0,1)=(0,6) \\
& 5 P=(0,6)+(0,1) \stackrel{(\text { ii) }}{=} \mathcal{O} \\
& 6 P=\mathcal{O}+(0,1) \stackrel{(\text { (i) }}{=}(0,1)
\end{aligned}
$$

