Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 9
 - Proposed Solution -

Friday, January 12, 2018

Solution of Problem 1

a) $E_{a, b}: y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{F}_{7}, P_{1}=(1,1), P_{2}=(6,2)$

$$
\begin{aligned}
P_{1} & \Rightarrow 1 \equiv 1+a+b \Leftrightarrow a+b \equiv 0 \Leftrightarrow a \equiv-b \quad \bmod 7 \\
P_{2} & \Rightarrow 4 \equiv 6-6 b+b \Leftrightarrow 5 b \equiv 2 \Leftrightarrow b \equiv 6 \Rightarrow a \equiv 1 \bmod 7 \\
& \Rightarrow y^{2}=x^{3}+x+6
\end{aligned}
$$

Calculate $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \equiv 5(4+(-1) \cdot 1) \equiv 15 \equiv 1 \neq 0 \bmod 7$. It follows $E_{1,6}$ is an eliptic curve over \mathbb{F}_{7}.
b) $E_{6,1}: y^{2}=x^{3}+6 x+1$. With

$$
\Delta=-16\left(4 a^{3}+27 b^{2}\right) \equiv 5\left(4 \cdot(-1)^{3}-1 \cdot 1\right) \equiv 3 \neq 0 \quad \bmod 7
$$

is $E_{6,1}$ an elliptic curve over \mathbb{F}_{7}.

x	x^{2}	x^{3}	$6 x$	$x^{3}+6 x+1$
0	0	0	0	1
1	1	1	6	1
2	4	1	5	0
3	2	6	4	4
4	2	1	3	5
5	4	6	2	2
6	1	6	1	1

$$
\begin{aligned}
\Rightarrow & y^{2} \in\{0,1,2,4\} \\
& x^{3}+6 x+1 \in\{0,1,2,4,5\} \\
\Rightarrow & E_{6,1}\left(\mathbb{F}_{7}\right)=\{(0,1),(0,6),(1,1),(1,6),(2,0),(3,2),(3,5), \\
& (5,3),(5,4),(6,1),(6,6), \mathcal{O}\} \\
& \# E_{6,1}\left(\mathbb{F}_{7}\right)=12
\end{aligned}
$$

The solutions for the inverses are

$$
\begin{aligned}
(0,1) & =-(0,6) \\
(1,1) & =-(1,6) \\
(6,1) & =-(6,6) \\
(2,0) & =-(2,0) \\
(3,2) & =-(3,5) \\
(5,3) & =-(5,4) \\
\mathcal{O} & =-\mathcal{O}
\end{aligned}
$$

Note: $\# E_{6.1}\left(\mathbb{F}_{7}\right)=q+1-t \Leftrightarrow t=7+1-\# E_{6,1}\left(\mathbb{F}_{7}\right)=8-12=-4$
c) It holds $\operatorname{ord}(P) \mid \# E_{6,1}\left(\mathbb{F}_{7}\right)=12 \Rightarrow \operatorname{ord}(P) \in\{1,2,3,4,6,12\}$ (c.f. Lagrange's theorem).
d) As just observed, the order of the subgroup generated by $Q=(1,1)$ may be $\operatorname{ord}(Q) \in$ $\{1,2,3,4,6,12\}$. We will eliminate one element after another from the set until we reach $\operatorname{ord}(Q)=12$. The conclusion will be that Q is a generator.

$$
\begin{gathered}
Q \neq \mathcal{O} \Rightarrow \operatorname{ord}(Q) \in\{2,3,4,6,12\} \\
4 Q \neq \mathcal{O}(\text { known from exercise }) \Rightarrow \operatorname{ord}(Q) \in\{2,3,6,12\}
\end{gathered}
$$

Calculate $2 Q$.

$$
\begin{aligned}
2 Q & =(1,1)+(1,1)=(x, y), \text { with } \\
x & =\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1}=\left(\frac{3 \cdot 1+6}{2}\right)^{2}-2 \\
& =\left(\frac{9}{2}\right)^{2}-2=(9 \cdot 4)^{2}-2=1^{2}-2=6 \\
y & =\left(\frac{3 x_{1}+a}{2 y_{1}}\right)\left(x_{1}-x\right)-y_{1}=\frac{9}{2}(1-6)-1 \\
& =1 \cdot 2-1=1 \\
\Rightarrow 2 Q & =(6,1)
\end{aligned}
$$

Let $\operatorname{ord}(Q)=2$, then $4 Q=\mathcal{O}$, a contradiction $\Rightarrow \operatorname{ord}(Q) \in\{3,6,12\}$

$$
\begin{gathered}
Q+2 Q \neq \mathcal{O}(\text { see inverses above }) \Rightarrow \operatorname{ord}(Q) \in\{6,12\} \\
2 Q+4 Q
\end{gathered}=\mathcal{O}(\text { see inverses above }) \Rightarrow \operatorname{ord}(Q)=12
$$

We conclude that Q is a generator.

Solution of Problem 2

a) $\Delta=-16\left(4 \cdot 4^{3}+27 \cdot 1\right) \equiv-4528 \equiv-3 \equiv 2 \not \equiv 0 \bmod 5$.
$\Rightarrow E$ is an elliptic curve.
b) We use the following table to determine the points.

z	$4 z$	z^{2}	z^{3}	$1+4 z+z^{3}$
0	0	0	0	1
1	4	1	1	1
2	3	4	3	2
3	2	4	2	0
4	1	1	4	1

This provides that $y^{2} \in\{0,1,4\}$ and $x^{3}+4 x+1 \in\{0,1,2\}$.
So we only need to consider the cases where both terms are either equal 0 :

$$
\begin{aligned}
& x^{3}+4 x+1=0 \\
& y^{2} \Rightarrow x=3 \\
& \Rightarrow y=0
\end{aligned}
$$

or equal 1:

$$
\begin{aligned}
x^{3}+4 x+1 & =1
\end{aligned} \Rightarrow x \in\{0,1,4\}, 1+y^{2}=1 \Rightarrow y \in\{1,4\}
$$

This enables us to find all the points on the curve:

$$
E\left(\mathbb{F}_{5}\right)=\{\mathcal{O},(0,1),(0,4),(1,1),(1,4),(4,1),(4,4),(3,0)\}
$$

The total number of points on the curve is $\# E\left(\mathbb{F}_{5}\right)=8$.
c) Is $Q=(1,1)$ a generator of the curve?

$$
\begin{aligned}
2 Q & \stackrel{(i i)}{=} Q+Q \\
x & =\left(\left(3 \cdot 1^{2}+4\right)(2 \cdot 1)^{-1}\right)^{2}-2 \cdot 1=\left(2 \cdot 2^{-1}\right)^{2}-2=-1 \equiv 4 \\
y & =1(1-4)-1=-3-1=-4 \equiv 1
\end{aligned}
$$

$2 Q=(4,1)$ is a point on the curve.

$$
\begin{aligned}
4 Q & \stackrel{(i i)}{=} 2 Q+2 Q \\
x & =\left(\left(3 \cdot 4^{2}+4\right)(2 \cdot 1)^{-1}\right)^{2}-4 \cdot 2=\left(2 \cdot 2^{-1}\right)^{2}-4 \cdot 2=3 \\
y & =0
\end{aligned}
$$

$4 Q=(3,0)$ is a point on the curve.

$$
\begin{aligned}
& 8 Q \stackrel{(i i)}{=} 4 Q+4 Q \\
& \quad(3,0)+(3,0)=\mathcal{O}, \text { as this point is selfinverse }
\end{aligned}
$$

Hence $(1,1)$ is a generator of the curve.
d) The binary representation of 45 is 101101 .

$$
\begin{aligned}
45 P & =P+4 P+8 P+32 P \\
& =P+2^{2} P+2^{3} P+2^{5} P \\
& =P+2 \cdot 2 P+2 \cdot 2 \cdot 2 P+2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 P \\
& =P+2(2(P+2 P)+2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 P \\
& =P+2(2(P+2(P+2 \cdot 2 P))))
\end{aligned}
$$

The last line corresponds to the representation of Horner's scheme.
e) The iterative algorithm starts with the point P. Then it iterates through the bits of k from the MSB k_{m} downto k_{0}. It doubles if the current k_{i} is zero or it doubles and adds otherwise. At the end of the loop it returns the computed point $Q=k P$.

```
Algorithm \(1 f_{\mathrm{it}}\left(P, k=k_{m}, \ldots, k_{0}\right)\)
    \(Q \leftarrow P ;\)
    for \(i \leftarrow m-2\) downto 0 do
        \(Q \leftarrow 2 Q ; \quad / /\) Double
        if \(k_{i}==1\) then \(\quad / /\) if \(i\)-th the bit is 1
            \(Q \leftarrow Q+P ; \quad / /\) Add
        end if;
    end for;
    return \(Q\);
```

When the iterative algorithm is applied to the given example with $k=45$, we obtain the following sequence from the for-loop:

$$
P, 2 P, 2(2 P)+P, 2(2(2 P)+P), 2(2(2(2 P)+P)), 2(2(2(2(2 P)+P)))+P
$$

The last outcome can be reformulated to $2(2(2(2(2 P)+P)))+P=2^{5} P+2^{3} P+2^{2} P+P$ which corresponds to the binary expansion of $45 P$.
f) In the recursive algorithm, it calls itself recursively without the last bit.

```
Algorithm \(2 f_{\text {rec }}(P, k)\)
    if \(k==1\) then
        return \(P\);
    else
        if \(k \bmod 2=0\) then \(\quad / /\) i.e., the LSB is zero
            return \(2 \cdot f_{\text {rec }}(P, k \gg 1) ; \quad / /\) Double, right-shift \(k\) by one bit
        else // otherwise the LSB is one
            return \(P+2 \cdot f_{\text {rec }}(P, k \gg 1) ; \quad / /\) Double and Add, right-shift \(k\) by one bit
        end if;
    end if;
```

When the recursive algorithm is applied to the given example with $k=45$, we obtain $45 P=P+2(2(P+2(P+2(2 P))))$ which corresponds to the Horner's scheme of $45 P$.

