Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 10

- Proposed Solution -

Friday, January 19, 2018

Solution of Problem 1

a) In this case we consider a quadratic function $(n=2)$ and its derivative $(m=1)$:

$$
f(x)=a x^{2}+b x+c, \quad f^{\prime}(x)=2 a x+b
$$

Inserting this into the resultant yields:

$$
\begin{aligned}
\operatorname{Res}\left(f, f^{\prime}\right) & =\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
2 a & b & 0 \\
0 & 2 a & b
\end{array}\right)=a \cdot \operatorname{det}\left(\begin{array}{cc}
b & 0 \\
2 a & b
\end{array}\right)-2 a \cdot \operatorname{det}\left(\begin{array}{cc}
b & c \\
2 a & b
\end{array}\right) \\
& =a b^{2}-2 a\left(b^{2}-2 a c\right)=a b^{2}-2 a b^{2}+4 a^{2} c=-a b^{2}+4 a^{2} c
\end{aligned}
$$

The discriminant of $f(x)$ yields:

$$
\Delta=(-1)^{\binom{2}{2}} \cdot\left(-a b^{2}+4 a^{2} c\right) a^{-1}=b^{2}-4 a c
$$

Remark: The $a b c$-formula for solving quadratic equations is known as:

$$
x_{1,2}=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

The corresponding $p q$-formula is obtained for $a=1, b=p, c=q$:

$$
x_{1,2}=-\frac{p}{2} \pm \frac{\sqrt{p^{2}-4 q}}{2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}-4 q}{4}}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}
$$

b) In this second case we consider a cubic function $(n=3)$ and its derivative ($m=2$):

$$
f(x)=x^{3}+a x+b, \quad f^{\prime}(x)=3 x^{2}+a
$$

Inserting this into the resultant yields:

$$
\underbrace{\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & a & b & 0 \\
0 & 1 & 0 & a & b \\
3 & 0 & a & 0 & 0 \\
0 & 3 & 0 & a & 0 \\
0 & 0 & 3 & 0 & a
\end{array}\right)}_{(I I I)}=1 \cdot \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & a & b \\
0 & a & 0 & 0 \\
3 & 0 & a & 0 \\
0 & 3 & 0 & a
\end{array}\right) \quad+3 \cdot \underbrace{\operatorname{det}\left(\begin{array}{cccc}
0 & a & b & 0 \\
1 & 0 & a & b \\
3 & 0 & a & 0 \\
0 & 3 & 0 & a
\end{array}\right)}_{(I)}
$$

The evaluation of the determinant (I) yields:

$$
\begin{aligned}
& 1 \cdot \operatorname{det}\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a & 0 \\
3 & 0 & a
\end{array}\right)+3 \cdot \operatorname{det}\left(\begin{array}{ccc}
0 & a & b \\
a & 0 & 0 \\
3 & 0 & a
\end{array}\right) \\
& =a \cdot \operatorname{det}\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)-3 a \cdot \operatorname{det}\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \\
& =a^{3}-3 a^{3}=-2 a^{3}
\end{aligned}
$$

The evaluation of the determinant (II) yields:

$$
\begin{aligned}
& (-3) \cdot \operatorname{det}\left(\begin{array}{ccc}
a & b & 0 \\
0 & a & 0 \\
3 & 0 & a
\end{array}\right)+3 \cdot 3 \cdot \operatorname{det}\left(\begin{array}{ccc}
a & b & 0 \\
0 & a & b \\
3 & 0 & a
\end{array}\right) \\
& =(-3) a \cdot \operatorname{det}\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)+9 a \cdot \operatorname{det}\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right)+9 \cdot 3 \cdot \operatorname{det}\left(\begin{array}{ll}
b & 0 \\
a & b
\end{array}\right) \\
& =(-3) a^{3}+9 a^{3}+27 b^{2}=6 a^{3}+27 b^{2}
\end{aligned}
$$

Combining (I) and (II) provides the determinant (III):

$$
-2 a^{3}+6 a^{3}+27 b^{2}=4 a^{3}+27 b^{2}
$$

Altogether, the discriminant of $f(x)$ results in:

$$
\Delta=(-1)^{\binom{3}{2}} \cdot\left(4 a^{3}+27 b^{2}\right)=-\left(4 a^{3}+27 b^{2}\right)
$$

Solution of Problem 2

a) In general, the formula $E: Y^{2}=X^{3}+a X+b$ with $a, b \in K$ describes an elliptic curve.

Here, we have $a=2, b=6$ with $a, b \in \mathbb{F}_{7}$.
E is an elliptic curve over \mathbb{F}_{7}, since the discriminant is:

$$
\begin{equation*}
\Delta=-16\left(4 a^{3}+27 b^{2}\right) \equiv-16064 \equiv 1 \not \equiv 0 \quad(\bmod 7) \tag{1}
\end{equation*}
$$

b) The point-counting algorithm is solved in a table:

z	z^{2}	z^{3}	$z^{3}+2 z+6$
0	0	0	6
1	1	1	2
2	4	1	4
3	2	6	4
4	2	1	1
5	4	6	1
6	1	6	3

From this table we obtain:

$$
\begin{gathered}
Y^{2} \in\{0,1,2,4\}, \\
X^{3}+2 X+6 \in\{0,1,2,3,4,6\},
\end{gathered}
$$

and hence it follows:

$$
E\left(\mathbb{F}_{7}\right)=\{(1,3),(1,4),(2,2),(2,5),(3,2),(3,5),(4,1),(4,6),(5,1),(5,6), \mathcal{O}\}
$$

The inverses of each point are:

$$
\begin{aligned}
-(1,3) & =(1,4), \\
-(2,2) & =(2,5), \\
-(3,2) & =(3,5), \\
-(4,1) & =(4,6), \\
-(5,1) & =(5,6), \\
-\mathcal{O} & =\mathcal{O}
\end{aligned}
$$

c) The order of the group is $\left.\operatorname{ord}\left(E\left(\mathbb{F}_{q}\right)\right)=\# E\left(\mathbb{F}_{q}\right)\right)=11$.
d) To obtain the discrete logarithm for $Q=a P$, we rearrange the equation:

$$
\begin{aligned}
c P+d Q & =c^{\prime} P+d^{\prime} Q \\
\Rightarrow\left(c-c^{\prime}\right) P & =\left(d^{\prime}-d\right) Q=\left(d^{\prime}-d\right) a P \\
\Rightarrow a & \equiv\left(c-c^{\prime}\right)\left(d^{\prime}-d\right)^{-1} \quad(\bmod (\operatorname{ord}(P))) .
\end{aligned}
$$

As $\operatorname{gcd}\left(d^{\prime}-d, n\right)=1$ holds, the discrete logarithm a exists.
e) The left-hand side and the right-hand side of (2) are evaluated and compared:

$$
\begin{aligned}
2 P & =(4,1)+(4,1)=\left(x_{3}, y_{3}\right) \\
x_{3} & =\left(\left(3 \cdot 4^{2}+2\right)(2 \cdot 1)^{-1}\right)^{2}-2 \cdot 4 \\
& \equiv\left((3 \cdot 2+2) 2^{-1}\right)^{2}+6 \equiv(8 \cdot 4)^{2}+6 \equiv 1 \quad(\bmod 7) \\
y_{3} & =(8 \cdot 4)(4-1)-1 \equiv 4 \quad(\bmod 7) \\
\Rightarrow 2 P & =(1,4)
\end{aligned}
$$

For the inverse of 2 we have: $1=7+2(-3) \Rightarrow 2^{-1} \equiv 4(\bmod 7)$.

$$
\begin{aligned}
2 P+4 Q & =(1,4)+(3,5)=\left(x_{3}, y_{3}\right) \\
x_{3} & =\left((5-4)(3-1)^{-1}\right)^{2}-1-3 \equiv\left(1 \cdot 2^{-1}\right)^{2}-4 \\
& \equiv 5 \quad(\bmod 7) \\
y_{3} & =(1 \cdot 4)(1-5)-4 \equiv 4(-4)-4 \equiv 1 \quad(\bmod 7) \\
\Rightarrow 2 P+4 Q & =(5,1) \\
-P-3 Q & =-(4,1)+(5,6)=(4,6)+(5,6)=\left(x_{3}, y_{3}\right) \\
x_{3} & =0-4-5 \equiv 5 \quad(\bmod 7) \\
y_{3} & =0-6 \equiv 1 \quad(\bmod 7) \\
\Rightarrow-P-3 Q & =(5,1)
\end{aligned}
$$

Equation (2) is fulfilled. The discrete logarithm is:

$$
a=(2-(-1))((-3)-4)^{-1} \equiv 3(-7)^{-1} \equiv 3 \cdot 3 \equiv 9 \quad(\bmod 11)
$$

Solution of Problem 3

Given an elliptic curve (EC), $E: Y^{2}=X^{3}+a X+b$, over a field K with $\operatorname{char}(K) \neq 2,3$ $\left(K=\mathbb{F}_{p^{m}}, p\right.$ prime, $\left.p>3, m \in \mathbb{N}\right), f(X, Y)=Y^{2}-X^{3}-a X-b$ and $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$ it holds

$$
\begin{gather*}
\frac{\partial f}{\partial X}=-3 X^{2}-a=0 \Leftrightarrow a=-3 X^{2} \text { and } \tag{2}\\
\frac{\partial f}{\partial Y}=2 Y=0 \stackrel{\operatorname{char}(K) \neq 2}{\Leftrightarrow} Y=0 . \tag{3}
\end{gather*}
$$

Note that (2) is equivalent to $a \equiv 0$ independent of X, if $\operatorname{char}(K)=3$.
The definition for a singular point of f is given as

$$
\begin{equation*}
P=(x, y) \in E(K) \text { singular }\left.\Leftrightarrow \frac{\partial f}{\partial X}\right|_{P}=\left.0 \wedge \frac{\partial f}{\partial Y}\right|_{P}=0 . \tag{4}
\end{equation*}
$$

Claim: $\Delta \neq 0 \Leftrightarrow E(K)$ has no singular points

Proof:

" \Rightarrow " Let $\Delta \neq 0$
Assumption: There exists a singular point $(x, y) \in E(K)$.

$$
\begin{align*}
y^{2} & =x^{3}+a x+b \\
\stackrel{(2),(3)}{\Leftrightarrow} 0 & =x^{3}+\left(-3 x^{2}\right) x+b=-2 x^{3}+b \\
\Leftrightarrow b & =2 x^{3} \tag{5}
\end{align*}
$$

Inserting these values for y, a and b into the discriminant yields:

$$
\begin{aligned}
\Rightarrow \Delta & =-16\left(4 a^{3}+27 b^{2}\right) \stackrel{(2),(5)}{=}-16\left(4\left(-3 x^{2}\right)^{3}+27\left(2 x^{3}\right)^{2}\right) \\
& \left.=-16\left(4 \cdot(-27) \cdot x^{6}+27 \cdot 4 \cdot x^{6}\right)\right)=0
\end{aligned}
$$

Which is a contradiction. It follows $E(K)$ has no singular points.
„६" $E(K)$ has no singular points
Assume $\Delta=0$ it follows $4 a^{3}+27 b^{2}=0$, as $\operatorname{char}(K) \neq 2$.
It follows with Cardano's method of solving cubic functions of the form $X^{3}+a X+b=0$ that it has a multiple root x (of degree 2 or 3):

$$
\begin{aligned}
f(x, 0) & =-x^{3}-\left(-3 x^{2}\right) x-2 x^{3}=0 \\
\left.\frac{\partial f}{\partial Y}\right|_{(x, 0)} & =2 \cdot 0=0, \text { and } \\
\left.\frac{\partial f}{\partial X}\right|_{(x, 0)} & =-3 x^{2}-\left(-3 x^{2}\right)=0, \text { as } x \text { is a multiple root. }
\end{aligned}
$$

It follows by (4) that $(x, 0)$ is a singularity, which is a contradiction to the assumption.
As a result, $\Delta \neq 0$ is necessary (excluding $\operatorname{char}(K)=2,3)$.

