Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 1

Friday, October 20, 2017

Problem 1. ($R S A$ encryption) A uniformly distributed message $m \in\{1, \ldots, n-1\}$ with $n=p q$ with two primes $p \neq q$ is encrypted using the RSA-algorithm with public key (n, e).
a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e., if $p \mid m$ or $q \mid m$.
b) Calculate the probability for m and n having common divisors.
c) How large is the probability of (b) roughly, if n has 1024 bits and the primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Problem 2. (Euler-Phi and RSA)
Let u and v be distinct odd primes, and let $n=u \cdot v$. Furthermore, suppose that an integer x satisfies $\operatorname{gcd}(x, u \cdot v)=1$.
a) Show that $x^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod u)$ and $x^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod v)$.
b) Show that $x^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod n)$.
c) Show that if $e d \equiv 1\left(\bmod \frac{1}{2} \varphi(n)\right)$ holds for two integers d and e, then we obtain $x^{e d} \equiv x$ $(\bmod n)$.

Problem 3. (Rabin cryptosystem) Alice and Bob are using the Rabin Cryptosystem. Bob uses the public key $n=4757=67 \cdot 71$. All integers in the set $\{1, \ldots, n-1\}$ are represented as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1 . Alice sends the cryptogram $c=1935$. Decipher this cryptogram.

Problem 4. (coin flipping) Consider the coin flipping protocol. Let $p>2$ be prime.
a) Show that if $x \equiv-x \bmod p$, then $x \equiv 0 \bmod p$.
b) Suppose Alice cheats when flipping coins over the telephone by choosing $p=q$. Show that Bob almost always loses if he trusts Alice.
c) Alice chooses $n=p^{2}$ as the secret key, but Bob suspects that Alice has cheated. Can Bob discover her attempt to cheat? Can Bob use Alice' cheating as an advantage for himself?

