Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 2

Friday, November 3, 2017

Problem 1. (Euler's criterion) Prove Euler's criterion (Proposition 9.2): Let $p>2$ be prime, then
$c \in \mathbb{Z}_{p}^{*}$ is a quadratic residue modulo $p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \bmod p$.

Problem 2. (properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_{p}^{*}$. Show the following:
a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_{0}$ with $a \equiv g^{i}$ $\bmod p$.
b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_{p}^{*}$ are quadratic residues modulo p.
c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 3. (Goldwasser-Micali) Using the Goldwasser-Micali cryptosystem, decrypt a ciphertext. Start by finding the cryptosystem's parameters.
a) Find a pseudo-square modulo $n=p \cdot q=31 \cdot 79$ by using the algorithm from the lecture notes. Start with $a=10$ and increase a by 1 until you find a quadratic non-residue modulo p. For b, start with $b=17$ and proceed analoguously.
b) Decrypt the ciphertext $c=(1418,2150,2153)$.

Problem 4.

(Knapsack cryptosystem)
A public key cryptosystem for a plaintext $m=\sum_{i=1}^{n} m_{i} 2^{i-1}$ with $n \in \mathbb{N}$ and $m_{i} \in\{0,1\}$ is given as follows:

Key Generation:

(1) Choose a random sequence $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, with $w_{i} \in \mathbb{N}$, such that $w_{k+1}>\sum_{i=1}^{k} w_{i}$ holds for $k=1, \ldots, n-1$.
(2) Choose modulus $q \in \mathbb{N}$, such that $q>\sum_{i=1}^{n} w_{i}$ holds.
(3) Choose multiplier $r \in \mathbb{N}$ with $1 \leq r<q$, such that $\operatorname{gcd}(r, q)=1$ holds.
(4) Compute $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ with $\beta_{i}=r w_{i} \bmod q$.
(5) The public key is $\boldsymbol{\beta}$ and the secret key is (\boldsymbol{w}, q, r).

Encryption Procedure:

The plaintext is encrypted as $c=\sum_{i=1}^{n} m_{i} \beta_{i}$.

Decryption Procedure:

```
\(d \leftarrow c r^{-1} \bmod q\)
for \(l=n\) downto 1 do
    if \(d \geq w_{l}\) then \(m_{l} \leftarrow 1\) else \(m_{l} \leftarrow 0\) end if
    \(d \leftarrow d-m_{l} w_{l}\)
end for
```

a) Show that $(\boldsymbol{w}, q, r)=\left(\left(2^{0}, 2^{1}, \ldots, 2^{n-1}\right), 2^{n}, 1\right)$ is a weak key in the sense that $m=c$.
b) Assume that $r \neq 1$ in the following and show that $\beta_{1}, \ldots, \beta_{n}$ are pairwise different.

Alice encrypts two plaintexts $m \neq m^{\prime}$ of the same length n with the same key $\boldsymbol{\beta}$ and obtains two different ciphertexts c and c^{\prime}. A confidential source tells you that m and m^{\prime} only differ in one bit position $1 \leq j \leq n$, i.e., $m_{j} \neq m_{j}^{\prime}$ and $m_{i}=m_{i}^{\prime}$ for all $i \neq j$.
c) How can the bit position j be determined?

Bob encrypts a plaintext m of length $n=5$. He chooses w_{1} at random and uses the rules $w_{i}=$ $2 w_{i-1}+1$ for $i=2, \ldots, n$ and $q=257$. His public key is $\boldsymbol{\beta}=(168,103,230,227,221)$.
d) Your confidential source provides $w_{4}=63$. Determine the secret key (\boldsymbol{w}, q, r) for the given $\boldsymbol{\beta}$. Hint: $257 \cdot 7-31 \cdot 58=1$.
e) Now, you receive the ciphertext $c=846$. Compute m for the given values.

