Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 3

Friday, November 10, 2017

Problem 1. (decpiher Blum-Goldwasser) Bob receives the following cryptogram from Alice:

$$
c=\left(101010111000011010001011100101111100110111000, x_{t+1}=1306\right)
$$

The message m has been encrypted using the Blum-Goldwasser cryptosystem with public key $n=1333=31 \cdot 43$. The letters of the Latin alphabet A, \ldots, Z are represented by the following 5 bit scheme: $A=00000, B=00001, \ldots, Z=11001$. Decipher the cryptogram c. Remark: The security requirement to use at most $h=\left\lfloor\log _{2}\left\lfloor\log _{2}(n)\right\rfloor\right\rfloor$ bits of the Blum-Blum-Shub generator is violated in this example. Instead, 5 bits of the output are used.

Problem 2. (Blum-Blum-Shub generator) The security of the Blum-Blum-Shub generator is based on the difficulty to compute square roots modulo $n=p q$ for two distinct primes p and q with $p, q \equiv 3 \bmod 4$.

Design a generator for pseudo-random bits which is based on the hardness of the RSA-problem.

Problem 3. (basic requirements for cryptographic hash functions) Using a block cipher $E_{K}(x)$ with block length k and key K, a hash function $h(m)$ is provided in the following way:

Append m with zero bits until it is a multiple of k, divide m into n blocks of k bits each.
$c \leftarrow E_{m_{0}}\left(m_{0}\right)$
for i in $1 . .(n-1)$ do
$d \leftarrow E_{m_{0}}\left(m_{i}\right)$
$c \leftarrow c \oplus d$
end for
$h(m) \leftarrow c$
a) Does this function fulfill the basic requirements for a cryptographic hash function?
b) Can these requirements be fulfilled by replacing the operation $\operatorname{XOR}(\oplus)$ by AND (\odot) ?

