Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 10

Friday, January 19, 2018

Problem 1. (elliptic curve discriminant) Consider a polynomial in $x \in \mathbb{R}$ of degree n and its first derivative:

$$
f(x)=f_{n} x^{n}+\cdots+f_{1} x+f_{0}, \quad f^{\prime}(x)=n f_{n} x^{n-1}+\cdots+f_{2} x+f_{1}
$$

The discriminant Δ is an invariant to evaluate the multiplicity of roots in a polynomial $f(x)$. It is computed by:

$$
\Delta=(-1)^{\binom{n}{2}} \cdot \operatorname{Res}\left(f, f^{\prime}\right) \frac{1}{f_{n}}
$$

The exponent $\binom{n}{2}$ denotes the binomial coefficient of n over 2 . The resultant $\operatorname{Res}(f, g)$ is used to compute shared roots in the polynomial $f(x)$ of degree n and polynomial $g(x)$ of degree m. The resultant is defined as the determinant of the $(m+n) \times(m+n)$ Sylvester matrix:

$$
\operatorname{Res}(f, g)=\operatorname{det}\left(\begin{array}{cccccccc}
f_{n} & & \cdots & & f_{0} & 0 & & 0 \\
0 & f_{n} & & \ldots & & f_{0} & & \\
& & \ddots & & & & \ddots & 0 \\
0 & & 0 & f_{n} & & \ldots & & f_{0} \\
g_{m} & & \cdots & & g_{0} & 0 & & 0 \\
0 & g_{m} & & \ldots & & g_{0} & & \\
& & \ddots & & & & \ddots & 0 \\
0 & & 0 & g_{m} & & \cdots & & g_{0}
\end{array}\right)
$$

a) Compute the discriminant Δ of the quadratic polynomial $f(x)=a x^{2}+b x+c$.
b) Compute the discriminant Δ of the cubic polynomial $f(x)=x^{3}+a x+b$.

Problem 2. (Pollard Rho Factoring Method) Consider the following function:

$$
E: Y^{2}=X^{3}+2 X+6
$$

a) Does E describe an elliptic curve in the field \mathbb{F}_{7} ? Give a reason.
b) Determine all points and their inverses in the \mathbb{F}_{7}-rational group.
c) What is the order of the group?

It is difficult to obtain the discrete logarithm a of Q to the base P for two points P, Q on an elliptic curve E. A possible approach is the application of the Pollard ρ-factoring method. The idea behind this method is to find numbers $c, d, c^{\prime}, d^{\prime} \in \mathbb{Z}$ for two given points P, Q on the elliptic curve with $\operatorname{gcd}\left(d-d^{\prime}, \operatorname{ord}(P)\right)=1$ such that the following equation holds:

$$
\begin{equation*}
c P+d Q=c^{\prime} P+d^{\prime} Q \tag{1}
\end{equation*}
$$

d) Compute the discrete logarithm a of Q to the base P by means of (1).

An oracle provides the values $c=2, d=4, c^{\prime}=-1, d^{\prime}=-3, P=(4,1), Q=(1,3)$, $4 Q=(3,5)$, and $-3 Q=(5,6)$. Assume that P is a generator.
e) Show that equation (1) is fulfilled for these values and compute the discrete logarithm a of $Q=(1,3)$ to the base $P=(4,1)$.

Problem 3. (singular points on elliptic curves) Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f:=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X(x, y)$ and $\partial f / \partial Y(x, y)$ vanish at P.
Prove for the discriminant Δ of the curve E that the following holds:
$\Delta \neq 0 \Leftrightarrow E$ has no singular points.

