Elliptic Curve Cryptography (ECC)

Michael Reyer: reyer@ti.rwth-aachen.de

Institute for Theoretical Information Technology
Prof. Dr. Rudolf Mathar

RWIHAACHEN

The Discrete Logarithm

Classical case	Elliptic curves
multiplicative group	additive group
$\left(Z_{n}^{*}, \cdot\right)$	$(E(K),+)$
a prim. element (PE)	G generator
$\mathbb{Z}_{n}^{*}=\left\{a^{k} \mid k=1, \ldots, \varphi(n)\right\}$	$E(K)=\{k G\|k=1, \ldots,\|E(K)\|\}$
for $y \in \mathbb{Z}_{n}^{*} \exists k \in\{1, \ldots, \varphi(n)\}$	für $P \in E(K) \exists k \in\{1, \ldots,\|E(K)\|\}$
$y=a^{k} \bmod n$	$P=k G$
$k=\log _{a} y$	$k=\log _{G} P$
k is DL of y to basis a	k is DL of P to basis G
a^{k} with Square-and-Multiply	$k G$ with Double-and-Add
Infeasible: Calculation of k	Infeasible: Calculation of k

Elliptic Curves over the Reals

Elliptic curves over the reals

- Simple graphical representation
- of the curve as well as
- addition (and doubling) of points.

Elliptic Curves over the Reals

Elliptic curves over the reals

- Simple graphical representation
- of the curve as well as
- addition (and doubling) of points.

$$
f(x, y)=y^{2}-\left(x^{3}+a x+b\right)=g(y)-h(x)=0, a, b, x, y \in \mathbb{R}
$$

Elliptic Curves over the Reals

Elliptic curves over the reals

- Simple graphical representation
- of the curve as well as
- addition (and doubling) of points.

$$
f(x, y)=y^{2}-\left(x^{3}+a x+b\right)=g(y)-h(x)=0, a, b, x, y \in \mathbb{R}
$$

- Preliminaries
- The curve is symmetric to x-axis
- Interesting: Nulls of cubic curve $h(x)$

Elliptic Curves over the Reals

Elliptic curves over the reals

- Simple graphical representation
- of the curve as well as
- addition (and doubling) of points.

$$
f(x, y)=y^{2}-\left(x^{3}+a x+b\right)=g(y)-h(x)=0, a, b, x, y \in \mathbb{R}
$$

- Preliminaries
- The curve is symmetric to x-axis
- Interesting: Nulls of cubic curve $h(x)$
- Known: if for the discriminant $\Delta=4 a^{3}+27 b^{2}$ of h holds:
- $\Delta>0: h$ has one null in the reals
- $\Delta<0: h$ has three nulls in the reals
- $\Delta=0$: it ex. double or triple null in the reals

Elliptic Curves over the Reals

Graphical Representation

$$
y^{2}=x^{3}-6 x+10, \Delta=4 \cdot(-6)^{3}+27 \cdot 10^{2}=1836
$$

Elliptic Curves over the Reals

Graphical Representation

Elliptic Curves over the Reals

Graphical Representation

Elliptic Curves over the Reals

$$
y^{2}=x^{3}-6 x-4 \sqrt{2}, \Delta=0
$$

Elliptic Curves over the Reals

RWIHAACHEN UNIVERSITY

Graphical Representation

Elliptic Curves over the Reals

Graphical Representation of Addition

Elliptic Curves over the Reals

Graphical Representation of Addition

- Define a line through P and Q.
- The third intersecting point on the curve is $-R$.

$$
y^{2}=x^{3}-6 x+6
$$

Elliptic Curves over the Reals

Graphical Representation of Addition

- Define a line through P and Q.
- The third intersecting point on the curve is $-R$.
- Mirror $-R$ at x-axis to obtain $R=P+Q$.

$$
y^{2}=x^{3}-6 x+6
$$

Elliptic Curves over the Reals

Graphical Representation of Addition

- Define a line through P and Q.
- The third intersecting point on the curve is $-R$.
- Mirror $-R$ at x-axis to obtain $R=P+Q, R+(-Q)=P$.

$$
y^{2}=x^{3}-6 x+6
$$

Elliptic Curves over the Reals

Graphical Representation of Addition

- Special case $P+(-P)=\mathcal{O}$
- \mathcal{O} is neutral element w.r.t. addition.

Elliptic Curves over the Reals

Graphical Doubling of Point $P+P$

Elliptic Curves over the Reals

Graphical Doubling of Point $P+P$

- Draw tangent at P.
- The second intersecting point of the tangent line defines $-R$.

Elliptic Curves over the Reals

Graphical Doubling of Point $P+P$

- Draw tangent at P.
- The second intersecting point of the tangent line defines $-R$.
- Mirroring $-R$ at x-axis defines $R=2 P$,

Elliptic Curves over the Reals

Graphical Doubling of Point $P+P$

- Draw tangent at P.
- The second intersecting point of the tangent line defines $-R$.
- Mirroring $-R$ at x-axis defines $R=2 P, R+(-P)=P$.

$$
y^{2}=x^{3}-6 x+6
$$

Elliptic Curves over Finite Fields

In cryptography elliptic curves over finite fields are used.

- No floating points
- No rounding error, important for error-free decryption

Elliptic Curves over Finite Fields

In cryptography elliptic curves over finite fields are used.

- No floating points
- No rounding error, important for error-free decryption

Elliptic curves over \mathbb{F}_{p}
$y^{2} \equiv x^{3}+a x+b(\bmod p)$ mit $a, b, x, y \in\{0,1, \ldots, p-1\}=\mathbb{Z}_{p}$

Elliptic Curves over Finite Fields

In cryptography elliptic curves over finite fields are used.

- No floating points
- No rounding error, important for error-free decryption

Elliptic curves over \mathbb{F}_{p}

$$
y^{2} \equiv x^{3}+a x+b(\bmod p) \text { mit } a, b, x, y \in\{0,1, \ldots, p-1\}=\mathbb{Z}_{p}
$$

$y^{2}=x^{3}+x$ in \mathbb{F}_{23}

Algebraic Formulas as in the reals, but reduced modulo p

