Elliptic Curve Cryptography (ECC)

Michael Reyer: reyer@ti.rwth-aachen.de

Institute for Theoretical Information Technology Prof. Dr. Rudolf Mathar

The Discrete Logarithm Comparison between Classical Case und Elliptic Curves

Classical case	Elliptic curves
multiplicative group	additive group
(Z_n^*, \cdot)	(E(K), +)
a prim. element (PE)	G generator
$\mathbb{Z}_n^* = \{a^k \mid k = 1, \dots, \varphi(n)\}$	$E(K) = \{k G \mid k = 1, \dots, E(K) \}$
for $y \in \mathbb{Z}_n^* \; \exists k \in \{1, \dots, \varphi(n)\}$	für $P \in E(K) \exists k \in \{1, \dots, E(K) \}$
$y = a^k \mod n$	P = k G
$k = \log_a y$	$k = \log_G P$
k is DL of y to basis a	k is DL of P to basis G
a^k with Square-and-Multiply	kG with Double-and-Add
Infeasible: Calculation of \boldsymbol{k}	Infeasible: Calculation of k

RWTHAACHEN UNIVERSITY

Elliptic curves over the reals

- Simple graphical representation
 - of the curve as well as
 - addition (and doubling) of points.

Elliptic curves over the reals

- Simple graphical representation
 - of the curve as well as
 - addition (and doubling) of points.

$$f(x,y) = y^2 - (x^3 + ax + b) = g(y) - h(x) = 0, \ a, b, x, y \in \mathbb{R}$$

Elliptic curves over the reals

- Simple graphical representation
 - of the curve as well as
 - addition (and doubling) of points.

$$f(x,y) = y^2 - (x^3 + ax + b) = g(y) - h(x) = 0, \ a, b, x, y \in \mathbb{R}$$

- Preliminaries
 - The curve is symmetric to x-axis
 - Interesting: Nulls of cubic curve h(x)

Elliptic curves over the reals

- Simple graphical representation
 - of the curve as well as
 - addition (and doubling) of points.

$$f(x,y) = y^2 - (x^3 + ax + b) = g(y) - h(x) = 0, \ a, b, x, y \in \mathbb{R}$$

Preliminaries

- The curve is symmetric to x-axis
- Interesting: Nulls of cubic curve h(x)
- Known: if for the discriminant $\Delta = 4a^3 + 27b^2$ of h holds:
 - $\Delta > 0$: h has one null in the reals
 - $\Delta < 0$: h has three nulls in the reals
 - $\Delta = 0$: it ex. double or triple null in the reals

 $y^2 = x^3 - 6x + 10$, $\Delta = 4 \cdot (-6)^3 + 27 \cdot 10^2 = 1836$

Þ

Elliptic Curves over the Reals Graphical Representation of Addition

RWITHAACHEN UNIVERSITY

Elliptic Curves over the Reals

- Define a line through P and Q.
- The third intersecting point on the curve is -R.

RWITHAACHEN UNIVERSITY

Elliptic Curves over the Reals

- Define a line through P and Q.
- The third intersecting point on the curve is -R.
- Mirror -R at x-axis to obtain R = P + Q.

RWTHAACHEN UNIVERSITY

Elliptic Curves over the Reals

- Define a line through P and Q.
- The third intersecting point on the curve is -R.
- Mirror -R at x-axis to obtain R = P + Q, R + (-Q) = P.

- ▶ Special case P + (-P) = O
- \mathcal{O} is neutral element w.r.t. addition.

Elliptic Curves over the Reals Graphical Doubling of Point P + P

RWTHAACHEN UNIVERSITY

Graphical Doubling of Point P + P

- Draw tangent at P.
- The second intersecting point of the tangent line defines -R.

RWITHAACHEN UNIVERSITY

Elliptic Curves over the Reals

- Graphical Doubling of Point P + P
 - Draw tangent at P.
 - The second intersecting point of the tangent line defines -R.
 - Mirroring -R at x-axis defines R = 2P,

RWTHAACHEN UNIVERSITY

Elliptic Curves over the Reals

Graphical Doubling of Point P + P

- Draw tangent at P.
- The second intersecting point of the tangent line defines -R.
- Mirroring -R at x-axis defines R = 2P, R + (-P) = P.

Elliptic Curves over Finite Fields

In cryptography elliptic curves over finite fields are used.

- No floating points
- ► No rounding error, important for error-free decryption

Elliptic Curves over Finite Fields

In cryptography elliptic curves over finite fields are used.

- No floating points
- ► No rounding error, important for error-free decryption

Elliptic curves over \mathbb{F}_p

 $y^2 \equiv x^3 + ax + b \pmod{p}$ mit $a, b, x, y \in \{0, 1, \dots, p-1\} = \mathbb{Z}_p$

Elliptic Curves over Finite Fields

In cryptography elliptic curves over finite fields are used.

- No floating points
- No rounding error, important for error-free decryption

Elliptic curves over \mathbb{F}_p

 $y^2 \equiv x^3 + ax + b \pmod{p}$ mit $a, b, x, y \in \{0, 1, \dots, p-1\} = \mathbb{Z}_p$

$$y^2 = x^3 + x$$
 in \mathbb{F}_{23}

Algebraic Formulas as in the reals, but reduced modulo p