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Solution of Problem 1

a) The basic requirements for a cryptographic hash function are given as.

• Given m ∈M, h(m) is easy to compute.
• Given y ∈ Y , it is infeasible to find m ∈M, such that h(m) = y. If this property

holds, we call a hash function preimage resistant (urbildresistent, Einwegfunktion).
• Given m ∈ M, it is infeasible to find m′ 6= m, such that h(m) = h(m′). In this

case, h is called second preimage resistant (schwach kollisionsresistent).
• It is infeasible to find m 6= m′ ∈ M with h(m) = h(m′). In this case, we call h

(strongly) collision free (stark kollisionsresistent).

b) The modified hash function h
′ is not preimage resistant, since for any hash value y of

the form 0 ‖m, a preimage is m. Therefore, we can find a preimage for at least one half
of all possible hash values.

Next, we prove that h
′ inherits the properties second-preimage and collision resistant

from h. We show that if we can find a collision or a second preimage for h
′ , then we

can easily do so for h. Suppose:

∃x0 6= x1 : h
′(x0) = h

′(x1).

Two cases:

• First bit of h
′(x0) is 0. Impossible as it implies that x0 = x1.

• First bit of h
′(x0) is 1. Then h(x0) = h(x1) a contradiction, as h is a hash function.

Solution of Problem 2
Recall Example 10.2: Select q prime, such that p = 2q + 1 is also prime (Sophie-Germain-
primes). Choose a, b as primitive elements modulo p. A message m = x0 + x1 · q, with
0 ≤ x0, x1 ≤ q − 1 is then hashed as

h(m) = ax0bx1 mod p .

This function is slow but collision free.



Claim. If m 6= m′ and h(m) = h(m′), then k = loga(b) mod p can be determined.
In other words, we show that if m 6= m′ with h(m) = h′(m) are known, the discrete logarithm
k = loga(b) mod p can be determined, which is known to be computationally infeasible, i.e.,
it is infeasible to find m 6= m′ with h(m) = h′(m).

Proof. (proof by contradiction) Let m = x0 + x1 · q, m′ = x′0 + x′1 · q.

h(m) = h′(m)
⇔ ax0bx1 ≡ ax′0bx′1 (mod p)
⇔ ax0akx1 ≡ ax′0akx′1 (mod p)
⇔ ak(x1−x′1)−(x′0−x0) ≡ 1 (mod p)

Since a is a primitive element modulo p,

k(x1 − x′1)− (x′0 − x0) ≡ 0 (mod p− 1)
⇔ k(x1 − x′1) ≡ x′0 − x0 (mod p− 1) . (?)

As m 6= m′, it holds that x1 − x′1 6≡ 0 (mod p − 1). Show that k = loga(b) mod p can be
efficiently computed. Assume 1 ≤ k, k′ ≤ p− 1 fulfill (?). Then,

k(x1 − x′1) ≡ x′0 − x0 (mod p− 1) ∧ k′(x1 − x′1) ≡ x′0 − x0 (mod p− 1)
⇒ (k − k′)(x1 − x′1) ≡ 0 (mod p− 1) .

It holds −(p − 2) ≤ k − k′ ≤ p − 2 and x1 6= x′1 and −(q − 1) ≤ x1 − x′1 ≤ q − 1. Let
d = gcd(x1 − x′1, p− 1), then, with (?), d | x′0 − x0.

(i) d = 1: k−k′ ≡ 0 (mod p−1)⇔ k = k′ (mod p−1) has one solution for 1 ≤ k, k′ ≤ p−1:

k = k0 = (x1 − x′1)
−1 (x′0 − x0) mod p− 1

(ii) d > 1: With (?)
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= 1. With (i), it follows that (??) has exactly one solution k0,

which can be determined by using the Extended Euclidean algorithm we get

k = k0 =
(

x1 − x′1
d

)−1
x′0 − x0

d
mod p− 1

d

Recall p − 1 = 2q ⇒ d ∈ {1, 2, q, 2q} ⇒ d ∈ {1, 2} as (x1 − x′1) ≤ q − 1. Check, if
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[
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d=2 only

≡ b (mod p).



Solution of Problem 3
Two hash functions with output lengths of 64 bits and 128 bits are given.

a) How many messages have to be created, such that the probability of a collision exceeds
0.86?
Birthday paradox: k objects, n bins, pk,n, the probability of “no collision”, is bounded
by
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With n = 264 ≈ 1.844 · 1019 and p = 0.86, we get k64 ≈ 8.517 · 109, and with n = 2128 ≈
3.403 · 1038, we get k128 ≈ 3.658 · 1019, where k64 and k128 denote the number of messages
needed to get a collision with probability of p = 0.86.

b) The following solution is an example and other solutions are possible. The main aspect
of this exercise is to show the growth in resources for generating collisions the longer
the hash function is.

Hardware resource 64 bit hash function 128 bit hash function
hash function executions k64 = 8.517 · 109 k128 = 3.658 · 1019

memory size k64 · 64 bits ≈ 63.5GiB k128 · 128 bits = 5.45 · 1011GiB
comparisons 0 + 1 + 2 + . . . + (k64 − 1) 1

2k128 (k128 − 1) ≈ 6.69 · 1038

= ∑k64−1
i=0 i = 1

2k64 (k64 − 1)
≈ 3.63 · 1019


