Tutorial 5
 - Proposed Solution -

Friday, November 23, 2018

Solution of Problem 1

$$
\begin{align*}
C_{i} & =M_{i+1} \oplus E_{K}\left(C_{i-1}\right), \quad i=1, \ldots, n-1 \tag{1}\\
\operatorname{MAC}_{K}^{(n)} & =E_{K}\left(C_{n-1}\right) \tag{2}\\
C_{0} & =M_{1} \tag{3}\\
\hat{C}_{i} & =E_{K}\left(\hat{C}_{i-1} \oplus M_{i}\right), \quad i=1, \ldots, n-1 \tag{4}\\
\widehat{\operatorname{MAC}}_{K}^{(n)} & =E_{K}\left(\hat{C}_{n-1} \oplus M_{n}\right) \tag{5}\\
\hat{C}_{0} & =0 \tag{6}
\end{align*}
$$

We show that the equivalency

$$
\begin{equation*}
\mathrm{MAC}_{K}^{(n)}=\widehat{\mathrm{MAC}}_{K}^{(n)} \tag{7}
\end{equation*}
$$

holds, by induction over n.
Proof. $n=1$:

$$
\mathrm{MAC}_{K}^{(1)} \stackrel{(2)}{=} E_{K}\left(C_{0}\right) \stackrel{(3)}{=} E_{K}\left(M_{1}\right) \stackrel{(6)}{=} E_{K}\left(\hat{C}_{0} \oplus M_{1}\right) \stackrel{(5)}{=} \widehat{\mathrm{MAC}}_{K}^{(1)}
$$

$n \rightarrow n+1$:

$$
\begin{aligned}
\mathrm{MAC}_{K}^{(n+1)} & \stackrel{(2)}{=} E_{K}\left(C_{n}\right) \stackrel{(1)}{=} E_{K}\left(M_{n+1} \oplus E_{K}\left(C_{n-1}\right)\right) \\
& \stackrel{(2)}{=} E_{K}\left(M_{n+1} \oplus \mathrm{MAC}_{K}^{(n)}\right) \\
& \stackrel{(7)}{=} E_{K}\left(M_{n+1} \oplus \widehat{\mathrm{MAC}}_{K}^{(n)}\right) \\
& \stackrel{(5)}{=} E_{K}\left(M_{n+1} \oplus E_{K}\left(\hat{C}_{n-1} \oplus M_{n}\right)\right) \\
& \stackrel{(4)}{=} E_{K}\left(M_{n+1} \oplus \hat{C}_{n}\right) \stackrel{(4)}{=} \hat{C}_{n+1} \stackrel{(2)}{=} \widehat{\mathrm{MAC}}_{K}^{(n+1)}
\end{aligned}
$$

Solution of Problem 2

In the ElGamal verification $v_{1} \equiv v_{2}(\bmod p)$ needs to be fulfilled.
Recall that $y=a^{x} \bmod p$ and $r=a^{k} \bmod p$ are used:

$$
\begin{gathered}
y^{r} r^{s} \equiv a^{h(m)} \quad(\bmod p) \\
\Leftrightarrow a^{x r} a^{k s} \equiv a^{h(m)} \quad(\bmod p) \\
\text { Fermmat }_{\Leftrightarrow}{ }^{2 r}+k s \equiv h(m) \quad(\bmod p-1) .
\end{gathered}
$$

Now, we expand both sides of the congruence with $u=h(m)^{-1} h\left(m^{\prime}\right) \bmod p-1$:

$$
\begin{align*}
x r u+k s u & \equiv h(m) h(m)^{-1} h\left(m^{\prime}\right) \equiv h\left(m^{\prime}\right) \quad(\bmod p-1) \tag{8}\\
\Leftrightarrow x r^{\prime}+k s^{\prime} & \equiv h\left(m^{\prime}\right) \quad(\bmod p-1) \tag{9}\\
\text { Fermat } a^{x r^{\prime}} a^{k s^{\prime}} & \equiv a^{h\left(m^{\prime}\right)} \quad(\bmod p) \\
\Leftrightarrow y^{r^{\prime}} r^{s^{\prime}} & \equiv a^{h\left(m^{\prime}\right)} \quad(\bmod p) \\
\Leftrightarrow y^{r^{\prime}}\left(r^{\prime}\right)^{s^{\prime}} & \equiv a^{h\left(m^{\prime}\right)} \quad(\bmod p) .
\end{align*}
$$

The equivalence assumption in the last line holds if $r \equiv r^{\prime}(\bmod p)$.
Note: In the ElGamal scheme, the condition $1 \leq r<p$ must be checked!
From (8) and (9), we have $r u \equiv r^{\prime}(\bmod p-1)$.
We have to solve the following system of two congruences w.r.t. r^{\prime} :

$$
\begin{aligned}
r^{\prime} & \equiv r u \quad(\bmod p-1), \\
r^{\prime} & \equiv r \quad(\bmod p)
\end{aligned}
$$

By means of the Chinese Remainder Theorem, we get the parameters:

$$
\begin{array}{ll}
a_{1}=r \bmod p, & a_{2}=r u \quad \bmod (p-1), \\
m_{1}=p, & m_{2}=p-1, \\
M_{1}=p-1, & M_{2}=p, \\
y_{1}=M_{1}^{-1} \equiv p-1 \quad(\bmod p), & y_{2}=M_{2}^{-1} \equiv 1 \quad(\bmod p-1), \\
M=p(p-1) . &
\end{array}
$$

The Chinese Remainder Theorem leads to the solution:

$$
\begin{aligned}
r^{\prime} & =\sum_{i=1}^{2} a_{i} M_{i} y_{i}=r(p-1)^{2}+r u p \\
& \equiv r\left(p^{2}-p-p+1+u p\right) \\
& \equiv r(p(p-1)-p+1+u p) \\
& \equiv r(u p-p+1) \quad(\bmod M=p(p-1))
\end{aligned}
$$

The forged signature

$$
\left(r^{\prime}, s^{\prime}\right) \text { with } r^{\prime}=r(u p-p+1) \quad \bmod M, \text { and } s^{\prime}=s u \quad \bmod (p-1)
$$

is a valid signature of $h\left(m^{\prime}\right)$, if $1 \leq r<p$ is not checked.

Solution of Problem 3

We have $p \equiv 3(\bmod 4), a$ is a primitive element modulo $p, y=a^{x} \bmod p$, and $a \mid p-1$. Assume that it is possible to find z such that $a^{r z} \equiv y^{r}(\bmod p)$, as given in the description. Let $s=\frac{p-3}{2}(h(m)-r z) \bmod p-1$. From $a \mid p-1$ if follows that there exits a $v \in \mathbb{Z}$ such that $v a=p-1$.

Choose $r=v$.
Task: Show that (r, s) is a valid signature.
Inserting the provided s yields:

$$
\begin{align*}
v_{1} & \equiv y^{r} r^{s} \equiv a^{r z} r^{\frac{p-3}{2}(h(m)-r z)} \\
& \equiv a^{r z}\left(r^{\frac{p-3}{2}}\right)^{h(m)-r z} \quad(\bmod p) . \tag{10}
\end{align*}
$$

Furthermore,

$$
v a=r a \equiv p-1 \quad(\bmod p) \Leftrightarrow r \equiv a^{-1}(p-1) \equiv-\left(a^{-1}\right) \quad(\bmod p) .
$$

To obtain (10), we exponentiate the above equation by the power of $\frac{p-3}{2}$:

$$
\Leftrightarrow r^{\frac{p-3}{2}} \equiv\left(-\left(a^{-1}\right)\right)^{\frac{p-3}{2}} \quad(\bmod p) .
$$

Note that $(-1) \bmod p$ is self-inverse:

$$
\Leftrightarrow r^{\frac{p-3}{2}} \equiv\left((-a)^{\frac{p-3}{2}}\right)^{-1} \quad(\bmod p)
$$

For $\frac{p-3}{2}$ even, we obtain $(-1)^{\frac{p-3}{2}}=1$, and with that:

$$
\begin{aligned}
\Rightarrow r^{\frac{p-3}{2}} & \equiv\left((-1)^{\frac{p-3}{2}} a^{\frac{p-3}{2}}\right)^{-1} \\
& \equiv\left(a^{\frac{p-3}{2}}\right)^{-1} \equiv a^{-\frac{p-3}{2}} \\
& \equiv a^{-\left(\frac{p-1}{2}-1\right)} \equiv a^{-\frac{p-1}{2}+1} \\
& \equiv \underbrace{a^{-\frac{p-1}{2}}} a \equiv-a \quad(\bmod p) .
\end{aligned}
$$

For the last line, note that a is a primitive element and that $\left(a^{\frac{p-1}{2}}\right)^{2} \equiv 1(\bmod p)$. This result provides the following for (10):

$$
\begin{aligned}
v_{1} & \equiv y^{r} r^{s} \equiv a^{r z} r^{\frac{p-3}{2}(h(m)-r z)} \\
& \equiv a^{r z}(-a)^{h(m)-r z} \\
& \equiv a^{r z} a^{h(m)-r z}(-1)^{h(m)-r z} \quad(\bmod p) .
\end{aligned}
$$

As m is chosen such that $h(m)-r z$ is even:

$$
\begin{aligned}
v_{1} & \equiv a^{r z} a^{h(m)-r z} \\
& \equiv a^{h(m)} \equiv v_{2} \quad(\bmod p),
\end{aligned}
$$

so that the forged signature is valid.

