Dr. Michael Reyer

Tutorial 8

- Proposed Solution -

Friday, December 21, 2018

Solution of Problem 1

Parameters: $n=p q$ with $p, q \equiv 3(\bmod 4)$, and p, q secret primes.
Each user chooses an arbitrary sequence of seeds $s_{1}, \ldots, s_{K} \in\{1, \ldots, n-1\}$, with $\operatorname{gcd}\left(s_{i}, n\right)=1$ and publishes: $v_{i}=\left(s_{i}^{2}\right)^{-1} \bmod n$.
A public hash function is applied:

$$
h:\{0,1\}^{*} \rightarrow\{0,1\}^{K}
$$

Signature generation:
(i) A chooses an arbitrary value $r \in\{1, \ldots, n-1\}$ and calculates $x=r^{2} \bmod n$. (witness)
(ii) A calculates: $\left(b_{1}, \ldots, b_{k}\right)=h(m, x)$ (challenge)
and afterwards $y=r \prod_{j=1}^{K} s_{j}^{b_{j}} \quad \bmod n($ response $)$
(iii) The signature of m is (x, y) :

$$
A \rightarrow B: m, x, y
$$

Verification:
(i) B calculates $\left(b_{1}, \ldots, b_{K}\right)=h(m, x)$. (challenge)
(ii) B calculates $z=y^{2} \prod_{j=1}^{K} v_{j}^{b_{j}} \bmod n$. (response)
(iii) B accepts the signature if $z=x$ holds.

Proof that this signature and verification scheme is correct:

$$
z=y^{2} \prod_{j=1}^{K} v_{j}^{b_{j}} \equiv \underbrace{r^{2}}_{\equiv x} \underbrace{\prod_{j=1}^{K} s_{j}^{2 b_{j}} \prod_{j=1}^{K} v_{j}^{b_{j}}}_{\equiv 1} \equiv x \quad(\bmod n)
$$

Solution of Problem 2

a) The secret service (MI5) chooses an arbitrary seed $s \in \mathbb{Z}_{n}$ per iteration. The MI5 calculates the quadratic residue $y=s^{2} \bmod n$:

$$
\text { MI5 } \rightarrow \text { JB: } y
$$

JB calculates the four square roots of y modulo n using the factors p, q of n.
JB chooses a square root x :

$$
\mathrm{JB} \rightarrow \text { MI5: } x
$$

The MI5 verifies that $x^{2} \equiv y(\bmod n)$.
Since JB has no information about s, he chooses the x with probability $\frac{1}{2}$, such that $x \not \equiv \pm s(\bmod n)$.
If the MI5 receives such an x, n can be factorized:

$$
\begin{aligned}
y \equiv s^{2} & \equiv x^{2} \quad(\bmod n) \\
\Rightarrow s^{2}-x^{2} & \equiv 0 \quad(\bmod n) \\
\Rightarrow(s-x)(s+x) & \equiv 0 \quad(\bmod n) .
\end{aligned}
$$

The probability that JB always fails by sending $x \equiv \pm s \bmod n$ in all 20 submissions is:

$$
\frac{1}{2^{20}}=\frac{1}{1048576} \approx 10^{-6} .
$$

b) Zero-knowledge property: No information about the secret may be revealed during the response.
However, in this protocol it is even possible, that the full secret s is revealed. Hence, this is not a secure zero-knowledge protocol!
c) A passive eavesdropper E can only obtain the values x and y. E only knows the square roots $\pm x$ of y modulo n, which is useless in the next iteration. This knowledge is not sufficient to factorize n. Obviously, the MI5 should not use the same y twice.

Solution of Problem 3

a) O knows y. He needs to send a pair $\left(x_{1}, x_{2}\right)$ with $x_{1} \cdot x_{2} \equiv y(\bmod n)$ to B . Then B will ask O to provide a square root of either x_{1} or x_{2}. If O is able to give the square roots for both x_{1} and x_{2}, he can compute a square root of y which is infeasible. Hence, O may know at most one square root. O chooses a random number s_{1} computes the numbers $x_{1}=s_{1}^{2} \bmod n$ and $x_{2}=y x_{1}^{-2} \bmod n$ and sends $\left(x_{1}, x_{2}\right)$ to B. O may calculate the square root of x_{1} as s_{1} but cannot do so for x_{2} and hence has a 50% chance of giving the right answer. Note that x_{1} needs to be invertible modulo n. If this is not the case then O has been lucky and is able to factorize n and break the system.
b) As the success probabilty for O is $0.5, \mathrm{O}$ need to ask 10 times as $2^{10}=1024>10^{3}$.
c) If B does not check $x_{1} \cdot x_{2} \bmod n=y, \mathrm{O}$ may send $\left(x_{1}, x_{2}\right)=\left(s_{1}^{2} \bmod n, s_{2}^{2} \bmod n\right)$.
d) If A uses the same random number r_{1} more than once O (as well as B) could get square roots of x_{1} and x_{2} and hence a square root of y. Particularly, B could directly ask for the other square root in the second time using the same r_{1}.
e) If r_{1} is not repeated, O cannot learn from listening to the protocol as he only learns abut one square root. If he is asked for the second square root O is lost as above.

