Dr. Michael Reyer
Tutorial 9

- Proposed Solution -

Friday, January 11, 2019

Solution of Problem 1

a) - $q|p-1: 7| 71-1=70 \checkmark$

- $\beta \in \mathbb{Z}_{p}^{*}$ shall have order $q=7$.
$\beta^{2} \bmod p=20^{2} \bmod p=45$
$\beta^{4} \bmod p=45^{2} \bmod p=37$
$\beta^{6} \bmod p=\beta^{2} \cdot \beta^{4} \bmod p=45 \cdot 37 \bmod p=32$
$\beta^{7} \bmod p=\beta \cdot \beta^{6} \bmod p=20 \cdot 32 \bmod p=1 \checkmark$
- $2^{t}<q: 2^{2}=4<7 \checkmark$
b) $v \equiv \beta^{-a} \equiv \beta^{-5} \equiv \beta^{2} \equiv 45(\bmod 71)$
c) 1. A chooses $r=3 \in\{1, \ldots, q-1\}$ and computes the witness $x=\beta^{r} \bmod p=20^{3}$ $\bmod 71=48$ and sends it to B.

2. B chooses $e=4 \in\left\{1, \ldots, 2^{t}\right\}$ and sends it to A as challenge.
3. A checks $1 \leq e=4 \leq 2^{t}=4$, computes $y=a \cdot e+r=5 \cdot 4+3=23 \equiv 2(\bmod 7)$ and sends it to B.
4. B computes $z=\beta^{y} \cdot v^{r} \equiv 20^{2} \cdot 45^{4} \equiv 45 \cdot 37^{2} \equiv 45 \cdot 20 \equiv 48(\bmod 71)$ and sees that $48=x=z=48 \checkmark$

Solution of Problem 2

We have the polynomial over \mathbb{F}_{7}

$$
q(X)=X^{3}+5 .
$$

a) The secret is 5 .
b) Four pairs $(i, q(i)), i \in \mathbb{F}_{7}$ need to be issued. The candidates are $(1,6),(2,6),(3,4)$, $(4,6),(5,4),(6,4)$.
c) Now we have the four pairs $(1,6),(2,2),(3,5)$, and $(4,0)$, named as $\left(x_{i}, y_{i}\right), i=1, \ldots, 4$. The polynomial over \mathbb{F}_{7} has the form

$$
r(X)=a X^{3}+b X^{2}+c X+d=\left(X^{3}, X^{2}, X, 1\right) \cdot(a, b, c, d)^{T}
$$

with $a, b, c, d \in \mathbb{F}_{7}$ and d is the secret. Moreover, those points must fulfill $y_{i}=r\left(x_{i}\right)$ which is equivalent to $A \cdot(a, b, c, d)^{T}=y$, where $y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(6,2,5,0)$ and

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 4 & 2 & 1 \\
6 & 2 & 3 & 1 \\
1 & 2 & 4 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 6 \\
1 & 4 & 2 & 1 & 2 \\
6 & 2 & 3 & 1 & 5 \\
1 & 2 & 4 & 1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 6 \\
0 & 3 & 1 & 0 & 3 \\
0 & 3 & 4 & 2 & 4 \\
0 & 1 & 3 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 6 \\
0 & 1 & 5 & 0 & 1 \\
0 & 0 & 3 & 2 & 1 \\
0 & 0 & 4 & 4 & 2
\end{array}\right) \longrightarrow \\
& \left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 6 \\
0 & 1 & 5 & 0 & 1 \\
0 & 0 & 1 & 3 & 5 \\
0 & 0 & 0 & 6 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 0 & 2 \\
0 & 1 & 5 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 4
\end{array}\right) \longrightarrow\left(\begin{array}{llll|l}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 4
\end{array}\right)
\end{aligned}
$$

Hence, $r(X)=X^{3}+X^{2}+4$ and the secret is $d=4$.

Solution of Problem 3

a) The binary representation of 45 is 101101 .

$$
\begin{aligned}
45 P & =P+4 P+8 P+32 P \\
& =P+2^{2} P+2^{3} P+2^{5} P \\
& =P+2 \cdot 2 P+2 \cdot 2 \cdot 2 P+2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 P \\
& =P+2(2(P+2 P)+2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 P \\
& =P+2(2(P+2(P+2 \cdot 2 P))))
\end{aligned}
$$

The last line corresponds to the representation of Horner's scheme. It also holds.

$$
45 P=2(2(2(2(2 P+O \cdot P)+1 \cdot P)+1 \cdot P)+O \cdot P)+1 \cdot P
$$

b) The iterative algorithm starts with the point $Q=P$. Then it iterates i from $m-1$ downto 0 . It doubles in all iterations Q and adds P if the current bit k_{i} is one. At the end of the loop it returns the computed point $Q=k P$.
When the iterative algorithm is applied to the given example with $k=45$, we obtain the following sequence from the for-loop.

$$
\begin{gathered}
P, 2 P+O \cdot P, 2(2 P+O \cdot P)+P, 2(2(2 P+O \cdot P)+P)+P, 2(2(2(2 P+O \cdot P)+P)+P)+O \cdot P, \\
2(2(2(2(2 P+O \cdot P)+P)+P)+O \cdot P)+P
\end{gathered}
$$

c) In the recursive algorithm, it calls itself recursively without the last bit.

When the recursive algorithm is applied to the given example with $k=45$, we obtain $45 P=P+2(2(P+2(P+2(2 P))))$ which corresponds to the Horner's scheme of $45 P$.

```
Algorithm 1 f fit (P,k=( }\mp@subsup{k}{m}{},\ldots,\mp@subsup{k}{0}{}\mp@subsup{)}{2}{}
    Q\leftarrowP
    for }i\leftarrowm-1\mathrm{ downto 0 do
        Q\leftarrow2Q // Double
        if }\mp@subsup{k}{i}{}=1\mathrm{ then // if }i\mathrm{ -th bit is 1
            Q\leftarrowQ+P // Add
        end if
    end for
    return Q
```

```
Algorithm \(2 f_{\text {rec }}\left(P, k=\left(k_{m}, \ldots, k_{0}\right)_{2}\right)\)
    if \(m=0\) then
                                    // This implies \(k=1\)
        return \(P\)
    else
        if \(k_{0}=0\) then
            return \(2 \cdot f_{\text {rec }}\left(P,\left(k_{m}, \ldots, k_{1}\right)_{2}\right) \quad / /\) Double
        else
            return \(\left.P+2 \cdot f_{\text {rec }}\left(P,\left(k_{m}, \ldots, k_{1}\right)_{2}\right)\right) \quad / /\) Double and Add
        end if
    end if
```

