

Dr. Michael Reyer

Tutorial 10 - Proposed Solution -Friday, January 18, 2019

Solution of Problem 1

Given an elliptic curve (EC), $E: Y^2 = X^3 + aX + b$, over a field K with $char(K) \neq 2, 3$ $(K = \mathbb{F}_{p^m}, p \text{ prime}, p > 3, m \in \mathbb{N}), f(X, Y) = Y^2 - X^3 - aX - b$ and $\Delta = -16(4a^3 + 27b^2)$ it holds

$$\frac{\partial f}{\partial X} = -3X^2 - a = 0 \Leftrightarrow a = -3X^2 \text{ and}$$
(1)

$$\frac{\partial f}{\partial Y} = 2Y = 0 \stackrel{\operatorname{char}(K) \neq 2}{\Leftrightarrow} Y = 0.$$
⁽²⁾

Note that (1) is equivalent to $a \equiv 0$ independent of X, if char(K) = 3.

The definition for a *singular point* of f is given as

$$P = (x, y) \in E(K) \text{ singular } \Leftrightarrow \frac{\partial f}{\partial X}|_P = 0 \land \frac{\partial f}{\partial Y}|_P = 0.$$
(3)

Claim: $\Delta \neq 0 \Leftrightarrow E(K)$ has no singular points

Proof:

",⇒" Let $\Delta \neq 0$ Assumption: There exists a singular point $(x, y) \in E(K)$.

$$y^{2} = x^{3} + ax + b$$

$$\stackrel{(1),(2)}{\Leftrightarrow} 0 = x^{3} + (-3x^{2})x + b = -2x^{3} + b$$

$$\Leftrightarrow b = 2x^{3}$$
(4)

Inserting these values for y, a and b into the discriminant yields:

$$\Rightarrow \Delta = -16(4a^3 + 27b^2) \stackrel{(1),(4)}{=} -16(4(-3x^2)^3 + 27(2x^3)^2) = -16(4 \cdot (-27) \cdot x^6 + 27 \cdot 4 \cdot x^6)) = 0$$

Which is a contradiction. It follows E(K) has no singular points.

,,⇐" E(K) has no singular points

Assume $\Delta = 0$ it follows $4a^3 + 27b^2 = 0$, as $char(K) \neq 2$. It follows with Cardano's method of solving cubic functions of the form $X^3 + aX + b = 0$ that it has a multiple root x (of degree 2 or 3):

$$f(x,0) = -x^3 - (-3x^2)x - 2x^3 = 0,$$

$$\frac{\partial f}{\partial Y}|_{(x,0)} = 2 \cdot 0 = 0, \text{ and}$$

$$\frac{\partial f}{\partial X}|_{(x,0)} = -3x^2 - (-3x^2) = 0, \text{ as } x \text{ is a multiple root.}$$

It follows by (3) that (x, 0) is a singularity, which is a contradiction to the assumption. As a result, $\Delta \neq 0$ is necessary (excluding char(K) = 2, 3).

Solution of Problem 2

By definition: $E: Y^2 = X^3 + aX + b$ with $a, b \in K$ and $\Delta = -16(4a^3 + 27b^2) \neq 0$ describes an elliptic curve.

a) Here: $E: Y^2 = X^3 + X + 1$, i.e., a = b = 1, $K = \mathbb{F}_7$. Then,

$$\Delta = -16(4a^3 + 27b^2) = -16(4 + 27) \equiv 5 \cdot 3 \equiv 1 \neq 0 \pmod{7}$$

It follows that E is an elliptic curve in \mathbb{F}_7 .

b) We use the following table to determine the points.

\overline{z}	z^{-1}	z^2	z^3	$1 + z + z^3$
0	-	0	0	1
1	1	1	1	3
2	4	4	1	4
3	5	2	6	3
4	2	2	1	6
5	3	4	6	5
6	6	1	6	6

It follows from the third column that,

$$Y^2 \in \{0, 1, 2, 4\} = A$$
,

and from the last column that

$$1 + X + X^3 \in \{1, 3, 4, 5, 6\} = B$$
.

Furthermore,

$$C = A \cap B = \{1, 4\}.$$

With $Y^2 = 1 \Leftrightarrow Y \in \{1, 6\}$ and $1 + X + X^3 = 1 \Leftrightarrow X = 0$
 $\Rightarrow (0, 1), (0, 6) \in E(\mathbb{F}_7).$

With $Y^2 = 4 \Leftrightarrow Y \in \{2, 5\}$ and $1 + X + X^3 = 4 \Leftrightarrow X = 2$ $\Rightarrow (2, 2), (2, 5) \in E(\mathbb{F}_7).$

We can determine the set of all points on E,

$$E(\mathbb{F}_7) = \{\mathcal{O}, (0,1), (0,6), (2,2), (2,5)\}.$$

For the trace t it holds

$$#E(\mathbb{F}_q) = q + 1 - t$$

Here, q = 7, and $\#E(\mathbb{F}_7) = 5$, so

$$5=7+1-t\Leftrightarrow t=3\,.$$

Note (Hasse): $t < 2\sqrt{q} = 2\sqrt{7} \approx 5.3$

- c) With the group law addition, $E(\mathbb{F}_7)$ is a finite Abelian group. It holds $\operatorname{ord}(P) | \# E(\mathbb{F}_7)$ (Lagrange's theorem). It follows for $P \neq \mathcal{O}$: $1 < \operatorname{ord}(P) = 5$, i.e., every $P \neq \mathcal{O}$ is a generator. The addition for P = (x, y), $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ is defined by
 - (i) $P + \mathcal{O} = P$
 - (ii) $P + (x, -y) = \mathcal{O} \Rightarrow -P = (x, -y)$
 - (iii) If $P_1 \neq \pm P_2 \Rightarrow P_3 = (x_3, y_3) = P_1 + P_2$ with $z = \frac{y_2 y_1}{x_2 x_1}$, $x_3 = z^2 x_1 x_2$, $y_3 = z(x_1 - x_3) - y_1$.
 - (iv) If $P_1 \neq -P_1 \Rightarrow 2P_1 = P_1 + P_1 = (x_3, y_3)$ with $c = \frac{3x_1^2 + a}{2y_1}$, $x_3 = c^2 2x_1$, $y_3 = c(x_1 x_3) y_1$.

Start with P = (0, 1).

$$2P = 2 \cdot (0, 1) \stackrel{\text{(iv)}}{=} (2, 5)$$

using $c = \frac{1}{2} = 2^{-1} \stackrel{\text{Table}}{=} 4 \Rightarrow x_3 = 4^2 \equiv 2 \Rightarrow y_3 = 4(-2) - 1 \equiv 5 \mod 7$

$$3P = (2, 5) + (0, 1) \stackrel{\text{(iii)}}{=} (2, 2)$$

using $z = \frac{-4}{-2} = 4 \cdot 2^{-1} = 2 \Rightarrow x_3 = 4 - 0 - 2 = 2$
 $\Rightarrow y_3 = 2(2 - 2) - 5 \equiv 2 \mod 7$

$$4P = (2, 2) + (0, 1) = (0, 6)$$

$$5P = (0, 6) + (0, 1) \stackrel{\text{(ii)}}{=} \mathcal{O}$$

$$6P = \mathcal{O} + (0, 1) \stackrel{\text{(ii)}}{=} (0, 1)$$