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Solution of Problem 1
Given an elliptic curve (EC), E : Y 2 = X3 + aX + b, over a field K with char(K) 6= 2, 3
(K = Fpm , p prime, p > 3, m ∈ N), f(X, Y ) = Y 2 −X3 − aX − b and ∆ = −16(4a3 + 27b2) it
holds

∂f

∂X
= −3X2 − a = 0⇔ a = −3X2 and (1)

∂f

∂Y
= 2Y = 0 char(K)6=2⇔ Y = 0. (2)

Note that (1) is equivalent to a ≡ 0 independent of X, if char(K) = 3.
The definition for a singular point of f is given as

P = (x, y) ∈ E(K) singular ⇔ ∂f

∂X
|P = 0 ∧ ∂f

∂Y
|P = 0. (3)

Claim: ∆ 6= 0⇔ E(K) has no singular points

Proof:
„⇒“ Let ∆ 6= 0
Assumption: There exists a singular point (x, y) ∈ E(K).

y2 = x3 + ax + b

(1),(2)⇔ 0 = x3 + (−3x2)x + b = −2x3 + b

⇔ b = 2x3 (4)
Inserting these values for y, a and b into the discriminant yields:

⇒ ∆ = −16(4a3 + 27b2) (1),(4)= −16(4(−3x2)3 + 27(2x3)2)
= −16(4 · (−27) · x6 + 27 · 4 · x6)) = 0

Which is a contradiction. It follows E(K) has no singular points.
„⇐“ E(K) has no singular points
Assume ∆ = 0 it follows 4a3 + 27b2 = 0, as char(K) 6= 2.
It follows with Cardano’s method of solving cubic functions of the form
X3 + aX + b = 0 that it has a multiple root x (of degree 2 or 3):

f(x, 0) = −x3 − (−3x2)x− 2x3 = 0,

∂f

∂Y
|(x,0) = 2 · 0 = 0, and

∂f

∂X
|(x,0) = −3x2 − (−3x2) = 0, as x is a multiple root.



It follows by (3) that (x, 0) is a singularity, which is a contradiction to the assumption.
As a result, ∆ 6= 0 is necessary (excluding char(K) = 2, 3).

Solution of Problem 2
By definition: E : Y 2 = X3 + aX + b with a, b ∈ K and ∆ = −16(4a3 + 27b2) 6= 0 describes
an elliptic curve.

a) Here: E : Y 2 = X3 + X + 1, i.e., a = b = 1, K = F7. Then,

∆ = −16(4a3 + 27b2) = −16(4 + 27) ≡ 5 · 3 ≡ 1 6≡ 0 (mod 7) .

It follows that E is an elliptic curve in F7.

b) We use the following table to determine the points.

z z−1 z2 z3 1 + z + z3

0 - 0 0 1
1 1 1 1 3
2 4 4 1 4
3 5 2 6 3
4 2 2 1 6
5 3 4 6 5
6 6 1 6 6

It follows from the third column that,

Y 2 ∈ {0, 1, 2, 4} = A ,

and from the last column that

1 + X + X3 ∈ {1, 3, 4, 5, 6} = B .

Furthermore,
C = A ∩B = {1, 4} .

With Y 2 = 1⇔ Y ∈ {1, 6} and 1 + X + X3 = 1⇔ X = 0

⇒ (0, 1), (0, 6) ∈ E(F7) .

With Y 2 = 4⇔ Y ∈ {2, 5} and 1 + X + X3 = 4⇔ X = 2

⇒ (2, 2), (2, 5) ∈ E(F7) .

We can determine the set of all points on E,

E(F7) = {O, (0, 1), (0, 6), (2, 2), (2, 5)} .

For the trace t it holds
#E(Fq) = q + 1− t .

Here, q = 7, and #E(F7) = 5, so

5 = 7 + 1− t⇔ t = 3 .

Note (Hasse): t < 2√q = 2
√

7 ≈ 5.3



c) With the group law addition, E(F7) is a finite Abelian group. It holds ord(P ) |#E(F7)
(Lagrange’s theorem). It follows for P 6= O : 1 < ord(P ) = 5, i.e., every P 6= O is a
generator. The addition for P = (x, y), P1 = (x1, y1), P2 = (x2, y2) is defined by

(i) P +O = P

(ii) P + (x,−y) = O ⇒ −P = (x,−y)
(iii) If P1 6= ±P2 ⇒ P3 = (x3, y3) = P1 + P2 with z = y2−y1

x2−x1
, x3 = z2 − x1 − x2,

y3 = z(x1 − x3)− y1.

(iv) If P1 6= −P1 ⇒ 2P1 = P1 + P1 = (x3, y3) with c = 3x2
1+a

2y1
, x3 = c2 − 2x1,

y3 = c(x1 − x3)− y1.

Start with P = (0, 1).

2P = 2 · (0, 1) (iv)= (2, 5)

using c = 1
2 = 2−1 Table= 4⇒ x3 = 42 ≡ 2⇒ y3 = 4(−2)− 1 ≡ 5 mod 7

3P = (2, 5) + (0, 1) (iii)= (2, 2)

using z = −4
−2 = 4 · 2−1 = 2⇒ x3 = 4− 0− 2 = 2

⇒ y3 = 2(2− 2)− 5 ≡ 2 mod 7
4P = (2, 2) + (0, 1) = (0, 6)

5P = (0, 6) + (0, 1) (ii)= O

6P = O + (0, 1) (i)= (0, 1)


