Dr. Michael Reyer

Tutorial 11
 - Proposed Solution -

Friday, January 25, 2019

Solution of Problem 1

a) $E_{a, b}: y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{F}_{7}, P_{1}=(1,1), P_{2}=(6,2)$

$$
\begin{aligned}
P_{1} & \Rightarrow 1 \equiv 1+a+b \Leftrightarrow a+b \equiv 0 \Leftrightarrow a \equiv-b \quad \bmod 7 \\
P_{2} & \Rightarrow 4 \equiv 6-6 b+b \Leftrightarrow 5 b \equiv 2 \Leftrightarrow b \equiv 6 \Rightarrow a \equiv 1 \bmod 7 \\
& \Rightarrow y^{2}=x^{3}+x+6
\end{aligned}
$$

Calculate $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \equiv 5(4+(-1) \cdot 1) \equiv 15 \equiv 1 \neq 0 \bmod 7$. It follows $E_{1,6}$ is an eliptic curve over \mathbb{F}_{7}.
b) $E_{6,1}: y^{2}=x^{3}+6 x+1$. With

$$
\Delta=-16\left(4 a^{3}+27 b^{2}\right) \equiv 5\left(4 \cdot(-1)^{3}-1 \cdot 1\right) \equiv 3 \neq 0 \quad \bmod 7
$$

is $E_{6,1}$ an elliptic curve over \mathbb{F}_{7}.

x	x^{2}	x^{3}	$6 x$	$x^{3}+6 x+1$
0	0	0	0	1
1	1	1	6	1
2	4	1	5	0
3	2	6	4	4
4	2	1	3	5
5	4	6	2	2
6	1	6	1	1

$$
\begin{aligned}
\Rightarrow & y^{2} \in\{0,1,2,4\} \\
& x^{3}+6 x+1 \in\{0,1,2,4,5\} \\
\Rightarrow & E_{6,1}\left(\mathbb{F}_{7}\right)=\{(0,1),(0,6),(1,1),(1,6),(2,0),(3,2),(3,5), \\
& (5,3),(5,4),(6,1),(6,6), \mathcal{O}\} \\
& \# E_{6,1}\left(\mathbb{F}_{7}\right)=12
\end{aligned}
$$

The solutions for the inverses are

$$
\begin{aligned}
(0,1) & =-(0,6) \\
(1,1) & =-(1,6) \\
(6,1) & =-(6,6) \\
(2,0) & =-(2,0) \\
(3,2) & =-(3,5) \\
(5,3) & =-(5,4) \\
\mathcal{O} & =-\mathcal{O}
\end{aligned}
$$

Note: $\# E_{6.1}\left(\mathbb{F}_{7}\right)=q+1-t \Leftrightarrow t=7+1-\# E_{6,1}\left(\mathbb{F}_{7}\right)=8-12=-4$
c) It holds $\operatorname{ord}(P) \mid \# E_{6,1}\left(\mathbb{F}_{7}\right)=12 \Rightarrow \operatorname{ord}(P) \in\{1,2,3,4,6,12\}$ (cf. Lagrange's theorem).
d) As just observed, the order of the subgroup generated by $Q=(1,1)$ may be $\operatorname{ord}(Q) \in$ $\{1,2,3,4,6,12\}$. We will eliminate one element after another from the set until we reach $\operatorname{ord}(Q)=12$. The conclusion will be that Q is a generator.

$$
\begin{gathered}
Q \neq \mathcal{O} \Rightarrow \operatorname{ord}(Q) \in\{2,3,4,6,12\} \\
4 Q \neq \mathcal{O}(\text { known from exercise }) \Rightarrow \operatorname{ord}(Q) \in\{2,3,6,12\}
\end{gathered}
$$

Calculate $2 Q$.

$$
\begin{aligned}
2 Q & =(1,1)+(1,1)=(x, y), \text { with } \\
x & =\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1}=\left(\frac{3 \cdot 1+6}{2}\right)^{2}-2 \\
& =\left(\frac{9}{2}\right)^{2}-2=(9 \cdot 4)^{2}-2=1^{2}-2=6 \\
y & =\left(\frac{3 x_{1}+a}{2 y_{1}}\right)\left(x_{1}-x\right)-y_{1}=\frac{9}{2}(1-6)-1 \\
& =1 \cdot 2-1=1 \\
\Rightarrow 2 Q & =(6,1) \neq \mathcal{O} \Rightarrow \operatorname{ord}(Q) \in\{3,6,12\}
\end{aligned}
$$

$$
Q+2 Q \neq \mathcal{O} \text { (see inverses above) } \Rightarrow \operatorname{ord}(Q) \in\{6,12\}
$$

$$
2 Q+4 Q \neq \mathcal{O} \text { (see inverses above) } \Rightarrow \operatorname{ord}(Q)=12
$$

We conclude that Q is a generator.

Solution of Problem 2

a) $E_{\alpha}: Y^{2}=X^{3}+\alpha X+1$ in \mathbb{F}_{13}.

$$
\begin{aligned}
& \alpha=2 \\
& \Delta=-16\left(4 a^{3}+27 b^{2}\right)=10\left(4 \cdot 2^{3}+27\right)=10 \cdot 59 \equiv 5 \not \equiv 0 \quad \bmod 13
\end{aligned}
$$

$\Rightarrow E_{2}$ is an elliptic curve.
b)

$$
\begin{aligned}
& 0 P=\mathcal{O} \\
& 1 P=(0,1) \\
& 2 P=(0,1)+(0,1)=(1,11) \\
& \quad \text { using } x_{3}=\left(\frac{3 \cdot 0^{2}+2}{2 \cdot 1}\right)^{2}-2 \cdot 0=\left(2 \cdot 2^{-1}\right)^{2}=1 \\
& \quad y_{3}=1 \cdot(0-1)-1=-2=11 \\
& 3 P=(1,11)+(0,1)=(8,10) \\
& \quad \text { using } x_{3}=\left(\frac{1-11}{0-1}\right)^{2}-1-0=(3 \cdot 12)^{2}-1=36^{2}-1=8 \\
& \quad y_{3}=36(1-8)-11=10 \\
& 4 P=(8,10)+(0,1)=(2,0) \\
& \quad \text { using } x_{3}=\left(\frac{1-10}{0-8}\right)^{2}-8-0=\left(4 \cdot 5^{-1}\right)^{2}-8=(4 \cdot 8)^{2}-8=2 \\
& \quad y_{3}=20(8-0)-3=1
\end{aligned}
$$

c) $\langle P\rangle \subseteq\{\mathcal{O},(0,1),(1,11),(8,10),(2,0),(0,12),(1,2),(8,3)\}$, where $(0,1)=-(0,12)$, $(1,11)=-(1,2),(8,10)=-(8,3)$ and $(2,0)=-(2,0)$. We start with the five points calculated earlier. Then we add the inverse elements, as they must be elements of the subgroup. With $\#\langle P\rangle=\# E\left(\mathbb{F}_{13}\right)$ is P a cyclic generator of order $\#\langle P\rangle=8$.
Note: equivalent solutions are possible.
d) With $b_{i}=i P, a=j m+i, g_{j}=Q-j m P$

$$
b_{i}=g_{j} \Leftrightarrow i P=Q-j m P \Leftrightarrow Q=(i+j m) P \Leftrightarrow Q=a P
$$

$i+m j$ covers all numbers between $0, \ldots, q-1$.
e) The babysteps have already been computed. Compute giantsteps: $Q-j m P$ until $Q-j m P=i P$ for some i with $j=0, \ldots, m-1$.

$$
\begin{aligned}
& j=0:(8,3)-0(2,0)=(8,3) \\
& j=1:(8,3)-(2,0)=(8,3)+(2,0)=(0,1)=P \\
& \quad \text { with } x_{3}=\left(\frac{0-3}{2-8}\right)^{2}-8-2=(10 \cdot 2)^{2}-10=0 \\
& y_{3}=20(8-0)-3=1
\end{aligned}
$$

$$
\Rightarrow j=1, i=1
$$

$$
\Rightarrow k=i+j m=1+1 \cdot 4=5
$$

$$
Q=5 P \Rightarrow 5(0,1)=(8,3)
$$

Check:

$$
\begin{aligned}
5 P & =4 P+P=(2,0)+(0,1)=(8,3) \\
\text { using } x_{3} & =\left(\frac{1-0}{0-2}\right)^{2}-1-0=16^{2}-2=8 \\
y_{3} & =(1 \cdot 6)(2-8)-0=6 \cdot 7-0=42=3
\end{aligned}
$$

