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Solution of Problem 1

a) Ea,b : y2 = x3 + ax+ b with a, b ∈ F7, P1 = (1, 1), P2 = (6, 2)

P1 ⇒ 1 ≡ 1 + a+ b⇔ a+ b ≡ 0⇔ a ≡ −b mod 7
P2 ⇒ 4 ≡ 6− 6b+ b⇔ 5b ≡ 2⇔ b ≡ 6⇒ a ≡ 1 mod 7
⇒ y2 = x3 + x+ 6

Calculate ∆ = −16(4a3 + 27b2) ≡ 5(4 + (−1) · 1) ≡ 15 ≡ 1 6= 0 mod 7. It follows E1,6
is an eliptic curve over F7.

b) E6,1 : y2 = x3 + 6x+ 1. With

∆ = −16(4a3 + 27b2) ≡ 5(4 · (−1)3 − 1 · 1) ≡ 3 6= 0 mod 7

is E6,1 an elliptic curve over F7.

x x2 x3 6x x3 + 6x+ 1
0 0 0 0 1
1 1 1 6 1
2 4 1 5 0
3 2 6 4 4
4 2 1 3 5
5 4 6 2 2
6 1 6 1 1

⇒y2 ∈ {0, 1, 2, 4}
x3 + 6x+ 1 ∈ {0, 1, 2, 4, 5}
⇒E6,1(F7) = {(0, 1), (0, 6), (1, 1), (1, 6), (2, 0), (3, 2), (3, 5),

(5, 3), (5, 4), (6, 1), (6, 6),O}
#E6,1(F7) = 12



The solutions for the inverses are

(0, 1) = −(0, 6)
(1, 1) = −(1, 6)
(6, 1) = −(6, 6)
(2, 0) = −(2, 0)
(3, 2) = −(3, 5)
(5, 3) = −(5, 4)
O = −O

Note: #E6.1(F7) = q + 1− t⇔ t = 7 + 1−#E6,1(F7) = 8− 12 = −4

c) It holds ord(P )|#E6,1(F7) = 12⇒ ord(P ) ∈ {1, 2, 3, 4, 6, 12} (cf. Lagrange’s theorem).

d) As just observed, the order of the subgroup generated by Q = (1, 1) may be ord(Q) ∈
{1, 2, 3, 4, 6, 12}. We will eliminate one element after another from the set until we reach
ord(Q) = 12. The conclusion will be that Q is a generator.

Q 6= O ⇒ ord(Q) ∈ {2, 3, 4, 6, 12}
4Q 6= O (known from exercise) ⇒ ord(Q) ∈ {2, 3, 6, 12}

Calculate 2Q.

2Q = (1, 1) + (1, 1) = (x, y), with

x =
(

3x2
1 + a

2y1

)2

− 2x1 =
(3 · 1 + 6

2

)2
− 2

=
(9

2

)2
− 2 = (9 · 4)2 − 2 = 12 − 2 = 6

y =
(

3x1 + a

2y1

)
(x1 − x)− y1 = 9

2(1− 6)− 1

= 1 · 2− 1 = 1
⇒ 2Q = (6, 1) 6= O ⇒ ord(Q) ∈ {3, 6, 12}

Q+ 2Q 6= O (see inverses above) ⇒ ord(Q) ∈ {6, 12}
2Q+ 4Q 6= O (see inverses above) ⇒ ord(Q) = 12

We conclude that Q is a generator.

Solution of Problem 2

a) Eα : Y 2 = X3 + αX + 1 in F13.

α = 2
∆ = −16(4a3 + 27b2) = 10(4 · 23 + 27) = 10 · 59 ≡ 5 6≡ 0 mod 13

⇒ E2 is an elliptic curve.



b)

0P = O
1P = (0, 1)
2P = (0, 1) + (0, 1) = (1, 11)

using x3 =
(

3 · 02 + 2
2 · 1

)2

− 2 · 0 = (2 · 2−1)2 = 1

y3 = 1 · (0− 1)− 1 = −2 = 11
3P = (1, 11) + (0, 1) = (8, 10)

using x3 =
(1− 11

0− 1

)2
− 1− 0 = (3 · 12)2 − 1 = 362 − 1 = 8

y3 = 36(1− 8)− 11 = 10
4P = (8, 10) + (0, 1) = (2, 0)

using x3 =
(1− 10

0− 8

)2
− 8− 0 = (4 · 5−1)2 − 8 = (4 · 8)2 − 8 = 2

y3 = 20(8− 0)− 3 = 1

c) 〈P 〉 ⊆ {O, (0, 1), (1, 11), (8, 10), (2, 0), (0, 12), (1, 2), (8, 3)}, where (0, 1) = −(0, 12),
(1, 11) = −(1, 2), (8, 10) = −(8, 3) and (2, 0) = −(2, 0). We start with the five points
calculated earlier. Then we add the inverse elements, as they must be elements of the
subgroup. With #〈P 〉 = #E(F13) is P a cyclic generator of order #〈P 〉 = 8.
Note: equivalent solutions are possible.

d) With bi = iP , a = jm+ i, gj = Q− jmP

bi = gj ⇔ iP = Q− jmP ⇔ Q = (i+ jm)P ⇔ Q = aP

i+mj covers all numbers between 0, . . . , q − 1.

e) The babysteps have already been computed. Compute giantsteps: Q − jmP until
Q− jmP = iP for some i with j = 0, . . . ,m− 1.

j = 0 : (8, 3)− 0(2, 0) = (8, 3)
j = 1 : (8, 3)− (2, 0) = (8, 3) + (2, 0) = (0, 1) = P

with x3 =
(0− 3

2− 8

)2
− 8− 2 = (10 · 2)2 − 10 = 0

y3 = 20(8− 0)− 3 = 1

⇒j = 1, i = 1
⇒k = i+ jm = 1 + 1 · 4 = 5
Q = 5P ⇒ 5(0, 1) = (8, 3)

Check:

5P = 4P + P = (2, 0) + (0, 1) = (8, 3)

using x3 =
(1− 0

0− 2

)2
− 1− 0 = 162 − 2 = 8

y3 = (1 · 6)(2− 8)− 0 = 6 · 7− 0 = 42 = 3


