
Advanced Methods of Cryptography

Dr. Michael Reyer

Tutorial 12
- Proposed Solution -

Friday, February 1, 2019

Solution of Problem 1
Before we solve the problem at hand, we take a look at our scenario: man-in-the-middle
attack. In general this means that an evesdropper can monitor messages into a communication
channel. Here, we have two channels.

Alice Bob

classical channel

quantum channel

Eve

The classical channel is authenticated, i.e., Eve can listen to this channel, but cannot change
the messages. Eve can listen to the quantum channel and inject qubits.
The quantum channel has the following properties. An evesdropper Eve must perform
measurements in order to observe the photon transmissions between Alice and Bob. Eve will
introduce errors in the data, because they have the state that Eve used for the measurement.
If Bob uses the correct basis to perform his measurements there will be a 25% chance that he
will have measured the wrong value.
As an example, let us consider that Alice sends a photon corresponding to |→〉 and Bob
uses the same basis +. If Eve uses +, then the photon is passed through correctly and Bob
measures the photon correctly. However, if Eve uses ×, then she will measure |↖〉 and |↗〉
equally likely. The photons that pass to Bob will have one of these orientations and will
therefore half the time be measured correctly as |→〉 and half the time incorrectly. Combining
the two possible choices of basis that Eve has, causes Bob to have a 25% chance of measuring
the incorrect value. Any eavesdropping introduces a higher error rate in the communication
between Alice and Bob. If Alice and Bob test their data for discrepancies over the conventional
channel, they will detect any eavesdropping.

a) Bob’s and Alice’s selected bases must be equal. Look at the table and read the one-time
pad of 16 bits as

0011 1001 1100 1001 .

Bob sends his chosen bases to Alice, and Alice tells Bob which ones were chosen correctly.
Alternatively Alice tells Bob which bases she used for preparation of the qubits.



b) Eight useful qubits are sent over the classical channel, and thereby sacrificed, in order
to check if there is an eavesdropper. This step must be authenticated, but needs not to
be encrypted. Suppose they were all intercepted, so there would be a probability of 25%
for each qubit that it gave the wrong measurement for Bob. Hence, the probability of
no discrepancies, i.e., the probability that Eve was lucky, is
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)8
≈ 0.1. In practice

Alice and Bob would want to use more bits to get a better estimate of the risk, but if
they went ahead with these their eight non-sacrifice qubits (the even numbered ones)
would give a one-time pad of

0101 1001 .

c) For n check qubits, the probability that Eve will not be detected for any of them is
(
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)n
.

For 99.9% certainty we are looking for n large enough that(3
4

)n

< 0.001 ⇔ n >
ln(0.001)

ln
(
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) ≈ 24.012

It follows that Alice and Bob need 45 useful qubits: 20 for the pad and 25 sacrificed for
detecting interceptions. Since on average only half the qubits are useful, they need 90
qubits altogether.

d) If Eve intercepts no more than 10%, then on average at least 2.5% of the qubits will
show a discrepancy. The probability of no discrepancy in n check qubits is 0.975n, so
for 95% certainty we need

0.975n < 0.05⇔ n >
ln (0.05)
ln (0.975) ≈ 118.325

For 139 useful qubits (20 for the pad, 119 to check), Alice and Bob need 278 qubits.


