Dr. Michael Reyer

Tutorial 13

- Proposed Solution -

Wednesday, February 6, 2019

Solution of Problem 1

a) The Rabin cryptosystem requires $n=p q$ with primes $p \neq q$ and $p, q \equiv 3(\bmod 4)$. As $\sqrt{989}<32$ start with $p=31$ which is prime and fulfills $p \equiv 3(\bmod 4)$. Then $\frac{n}{p}$ is no integer. Next smaller prime with $p \equiv 3(\bmod 4)$ is $p=23$. Then for $q=43$ it holds $n=p q$. Moreover, $q \equiv 3(\bmod 4)$ such that all conditions are fulfilled.
b) Let $p=7, q=23, n=p q, c=116$. Following Prop 9.3 it holds.

$$
\begin{gathered}
k_{p}=\frac{p+1}{4}=2 \quad k_{q}=\frac{q+1}{4}=6 \\
x_{p, 1}=c^{k_{p}}=116^{2} \equiv 2 \quad(\bmod 7) \\
x_{p, 2}=-x_{p, 1}=-2 \equiv 5 \quad(\bmod 7) \\
x_{q, 1}=c^{k_{q}}=116^{6} \equiv 1 \quad(\bmod 23) \\
x_{q, 2}=-x_{q, 1}=-1 \equiv 22 \quad(\bmod 23)
\end{gathered}
$$

Following Prop. 9.4 you apply the Extended Euclidean Algorithm and get:

$$
\begin{aligned}
& \begin{array}{rrrrrr}
a_{n} & b_{n} & f_{n} & r_{n} & c_{n} & d_{n} \\
\hline & & & 23 & 1 & 0
\end{array} \\
& \operatorname{gcd}(p, q)=s \cdot p+t \cdot q=10 \cdot 7+(-3) \cdot 23=1 .
\end{aligned}
$$

Compute the resulting square root modulo n .

$$
\begin{gathered}
a \equiv t q \equiv-3 \cdot 23 \equiv-69 \equiv 92 \quad(\bmod 161) \\
b \equiv s p \equiv 10 \cdot 7 \equiv 70 \quad(\bmod 161)
\end{gathered}
$$

We obtain the four different messages as $f_{i, j}=a \cdot x_{p, i}+b \cdot x_{q, j} \bmod 161$.

$$
\begin{gather*}
f_{1,1} \equiv 92 \cdot 2+70 \cdot 1 \equiv 254 \equiv 93 \quad(\bmod 161) \tag{1}\\
f_{1,2} \equiv 92 \cdot 2+70 \cdot 22 \equiv 1724 \equiv 114 \quad(\bmod 161) \tag{2}
\end{gather*}
$$

$$
\begin{align*}
f_{2,1} & \equiv 92 \cdot 5+70 \cdot 1 \equiv 530 \equiv 47 \quad(\bmod 161) \tag{3}\\
f_{2,2} & \equiv 92 \cdot 5+70 \cdot 22 \equiv 2000 \equiv 68 \quad(\bmod 161) \tag{4}
\end{align*}
$$

Finally, we transform the obtained values into binary notation.
(1) $93=\ldots 1101_{2}$
(2) $114=\ldots 0010_{2}$
(3) $47=\ldots 1111_{2} \quad \checkmark$
(4) $68=\ldots 0100_{2}$

The message is $m=47$.
c) Oscar chooses m at random and computes $c=m^{2} \bmod n$.
c is deciphered with plaintext m^{\prime}.
With probability $\frac{1}{2}$ is $m^{\prime} \neq \pm m$. In this case compute $\operatorname{gcd}\left(m-m^{\prime}, n\right) \in\{p, q\}$. Otherwise, repeat the previous steps.
d) In this case the solution of the Rabin cryptosystem can be obtained computing the square roots in the real domain. This vulnerability can be solved by padding and/or allowing messages bigger than \sqrt{n} only.

Solution of Problem 2

a) - Easy to compute,

- Preimage resistant, i.e., given y it is infeasible to find m s.t. $h(m)=y$.
- 2nd preimage resistant, i.e., given m it is infeasible to find m^{\prime} s.t. $h(m)=h\left(m^{\prime}\right)$.
- Collision-free, i.e., it is infeasible to find $m \neq m^{\prime}$ s.t. $h(m)=h\left(m^{\prime}\right)$.
b) Given, $h(m) \equiv m^{2}-1 \equiv(m+1)(m-1)(\bmod L)$. Let $m^{\prime}=m+k L$ with $k \in \mathbb{N}$. $h\left(m^{\prime}\right) \equiv\left(m^{\prime}+1\right)\left(m^{\prime}-1\right) \equiv(m+k L+1)(m+k L-1) \equiv(m+1)(m-1) \equiv h(m)$ $(\bmod L)$.
(Other solutions: $h\left(m^{\prime}\right) \equiv(m+k L)^{2}-1 \equiv m^{2}-1(\bmod L)$
$h(-m) \equiv(-m)^{2}-1 \equiv m^{2}-1(\bmod L)$.)

c) Verification

1) Obtain the authentic public key $\left(v_{1}, v_{2}, \ldots, v_{t}\right)$.
2) Steps 2) to 4) are identical to the signature generation procedure 1) to 3) above.
3) Accept the signature if and only if $v_{i_{j}}=h\left(s_{j}\right)$ for all $1 \leq j \leq u$ holds.
d) For $m=10$ we obtain the bitstream $\hat{m}=01010$ (with $n=5$ bits). The number of zeros is 3 and $t=5+\left\lfloor\log _{2}(5)\right\rfloor+1=8$. This leads to the concatenated message:

$$
\hat{w}=01010\left|011=\left(a_{1}, \ldots, a_{5}\right)\right| \mid\left(a_{6}, \ldots, a_{8}\right) .
$$

The positions with $a_{j}=1$ are $2,4,7,8$.
The signature for $m=10$ is: $\left(k_{2}, k_{4}, k_{7}, k_{8}\right)=(36,24,9,34)$.
e) Eve can generate signatures for arbitrary messages as soon as all keys have been used at least once. After Alice has signed a message, some keys are available for Eve so that she can already sign some messages.

Solution of Problem 3

a) Show that a is a primitive element modulo p

$$
a^{\frac{p-1}{p_{i}}} \not \equiv 1 \quad(\bmod p), \forall i=1, \ldots, k,
$$

with the prime factorization $p-1=\prod_{i=1}^{k} p_{i}^{t_{i}} \Rightarrow a$ is a primitive element modulo p_{i} prime.
In this case, $112=2^{4} \cdot 7$ and hence,
$3 \frac{112}{7} \equiv 49 \not \equiv 1(\bmod 113)$
$3 \frac{112}{2} \equiv 112 \not \equiv 1(\bmod 113)$
b) $s=k^{-1}(h(m)-x r) \bmod p-1$
$r=a^{k} \bmod p \Rightarrow 3^{19} \equiv 80(\bmod 113)$ by SQM then
$s \equiv 59(77-66 \cdot 80) \equiv 15(\bmod 112)$
c) $v_{1} \equiv y^{r} \cdot r^{s} \equiv y^{r} \cdot\left(a^{u} \cdot y^{v}\right)^{s} \equiv y^{r} \cdot a^{u s} \cdot y^{v s} \equiv y^{r+v s} \cdot a^{u s} \equiv 1 \cdot a^{u s}(\bmod p) v_{2} \equiv a^{m} \equiv a^{u s}$ $(\bmod p)$
d) $\hat{r}=a^{k} \bmod p$
$\hat{s}=k^{-1}(\hat{h}-x \hat{r}) \bmod p-1$
It holds $v_{1} \equiv y^{\hat{r}} \hat{r}^{\hat{s}} \equiv a^{\hat{h}} \equiv v_{2}(\bmod p)$
$r^{\prime}=\hat{r}\left(h^{\prime} \hat{h}^{-1} p-p+1\right) \bmod p(p-1)$
$s^{\prime}=\hat{s} h^{\prime} \hat{h}^{-1} \bmod p-1$
$\left.s^{\prime} \equiv k^{-1}(\hat{h}-x \hat{r}) \cdot h^{\prime} \hat{h}^{-1} \equiv k^{-1}\left(h^{\prime}-x \hat{r} h^{\prime} \hat{h}^{-1}\right)\right)(\bmod p-1)$
It should be
$r^{\prime} \equiv \hat{r}(\bmod p)$
$r^{\prime} \equiv \hat{r} h^{\prime} \hat{h}^{-1}(\bmod p-1)$ by Chinese Remainder Theorem it holds.
$M=p(p-1), M_{1}=p-1, M_{2}=p$
$y_{1} \equiv(p-1)^{-1} \equiv-1(\bmod p)$
$y_{2} \equiv p^{-1} \equiv 1(\bmod p-1) \Rightarrow$
$\Rightarrow r^{\prime}=\hat{r}(p-1)(-1)+\hat{r} h^{\prime} \hat{h}^{-1} \cdot p \cdot 1 \bmod p(p-1)$
e) It holds $r^{\prime}>p-1$ with high probability.

Solution of Problem 4

a) It must hold the following:

$$
Y_{m}^{2} \equiv X_{m}^{3}+a \cdot X_{m} \quad(\bmod p) .
$$

Let g be a generator of \mathbb{F}_{p}, then it exists $i \in \mathbb{F}_{p}$, s. t. $g^{i} \equiv m^{3}+a \cdot m(\bmod p)$. There are two different possibilities:

- If i is even, \checkmark.
- If i is odd, then

$$
(p-m)^{3}-a(p-m) \equiv-m^{3}-a \cdot m \equiv-g^{i} \equiv(-1) \cdot g^{i} \equiv g^{\frac{p-1}{2}} g^{i} \equiv g^{i+\frac{p-1}{2}} \quad(\bmod p) .
$$

As i and $\frac{p-1}{2}$ are odd, as $p \equiv 3(\bmod 4)$, the sum $i+\frac{p-1}{2}$ is even. This means $y=g^{\frac{i}{2}+\frac{p-1}{4}} \bmod p$. Note that $-1 \equiv g^{\frac{p-1}{2}}(\bmod p)$ as g is generator and \mathbb{F}_{p} is a field.
b) Let $m=x=6$.
$y^{2}=x^{3}+a x=6^{3}+1 \cdot 6=222 \equiv 91(\bmod 131)$
$2^{114} \equiv 91(\bmod 131) \Rightarrow 2^{57} \equiv y(\bmod 131) \Rightarrow y=22$
$2^{4} \equiv 16(\bmod 131)$
$2^{8} \equiv 125(\bmod 131)$
$2^{16} \equiv 36(\bmod 131)$
$2^{32} \equiv 117(\bmod 131)$
$2^{57} \equiv 2^{32} \cdot 2^{16} \cdot 2^{8} \cdot 2^{1} \equiv 22(\bmod 131)$
$22^{2} \equiv 91(\bmod 131)$
It holds that $(6,22)$ is the corresponding point on the EC.
c) For an EC it must hold $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \not \equiv 0(\bmod p)$. With $b=0$ it holds.
$\Delta \equiv-64 a^{3} \equiv-a^{3} \not \equiv 0(\bmod 7)$.
This is true for $1 \leq a \leq 6$.
d) Inserting the point (3,2) into the Elliptic curve equation:
$4=27+3 a \Longleftrightarrow 5 \equiv 3 a(\bmod 7) \Longleftrightarrow a=4$.
e) We create the following table.

x	x^{2}	x^{3}	$x^{3}+x$
0	0	0	0
1	1	1	2
2	4	1	3
3	2	6	2
4	2	1	5
5	4	6	4
6	1	6	5

Considering $y^{2} \equiv x^{3}+x(\bmod 7)$ leads to
$E_{1}\left(\mathbb{F}_{7}\right)=\{(0,0) ;(1,3) ;(1,4) ;(3,3) ;(3,4) ;(5,2) ;(5,5) ; \mathcal{O}\}$.
f) It holds $\left|E_{1}\left(\mathbb{F}_{7}\right)\right|=8=p+1-t \Rightarrow t=0$. This means the order is 8 and the trace is $t=0$.
g) As $\left|<P>\left|\left|\left|E_{1}\left(\mathbb{F}_{7}\right)\right|\right.\right.\right.$ it holds that $\left.|<P>\right| \in\{1,2,4,8\}$.
$|<P>| \neq 1$ as $P=(3,3) \neq \mathcal{O}$
$|<P>| \neq 2$ as $2 P=(1,4) \neq \mathcal{O}$
$|<P>| \neq 4$ as $4 P=(1,4)+(1,4) \neq \mathcal{O}$ as $(1,4) \neq-(1,4)=(1,3)$.
Hence, $|<P>|=8$, i.e., P is generator. Moreover $4 P+4 P=\mathcal{O}$, i.e., $4 P=(0,0)$ the only self-inverse point on the EC. It holds:

$$
\begin{aligned}
P & =(3,3) \\
2 P & =(1,4) \\
4 P=-4 P & =(0,0) \\
6 P=-2 P & =(1,3) \\
7 P=-P & =(3,5) \\
8 P & =\mathcal{O} .
\end{aligned}
$$

