

Dr. Michael Reyer

Tutorial 2 Friday, November 2, 2018

Problem 1. (Properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_p^*$. Show the following:

- a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_0$ with $a \equiv g^i \pmod{p}$.
- **b)** If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_p^*$ are quadratic residues modulo p.
- c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 2. (Goldwasser-Micali) Using the Goldwasser-Micali cryptosystem, decrypt a ciphertext. Start by finding the cryptosystem's parameters.

- a) Find a pseudo-square modulo $n = p \cdot q = 31 \cdot 79$ by using the algorithm from the lecture notes. Start with a = 10 and increase a by 1 until you find a quadratic non-residue modulo p. For b, start with b = 17 and proceed analogously.
- **b)** Decrypt the ciphertext c = (1418, 2150, 2153).

Problem 3.

(Knapsack cryptosystem)

A public key cryptosystem for a plaintext $m = \sum_{i=1}^{n} m_i 2^{i-1}$ with $n \in \mathbb{N}$ and $m_i \in \{0, 1\}$ is given as follows:

Key Generation:

- (1) Choose a random sequence $\boldsymbol{w} = (w_1, w_2, \dots, w_n)$, with $w_i \in \mathbb{N}$, such that $w_{k+1} > \sum_{i=1}^k w_i$ holds for $k = 1, \dots, n-1$.
- (2) Choose modulus $q \in \mathbb{N}$, such that $q > \sum_{i=1}^{n} w_i$ holds.
- (3) Choose multiplier $r \in \mathbb{N}$ with $1 \leq r < q$, such that gcd(r,q) = 1 holds.
- (4) Compute $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$ with $\beta_i = rw_i \mod q$.
- (5) The public key is $\boldsymbol{\beta}$ and the secret key is (\boldsymbol{w}, q, r) .

Encryption Procedure:

The plaintext is encrypted as $c = \sum_{i=1}^{n} m_i \beta_i$.

Decryption Procedure:

 $d \leftarrow cr^{-1} \mod q$ for l = n downto 1 do if $d \ge w_l$ then $m_l \leftarrow 1$ else $m_l \leftarrow 0$ end if $d \leftarrow d - m_l w_l$ end for

- a) Show that $(w, q, r) = ((2^0, 2^1, \dots, 2^{n-1}), 2^n, 1)$ is a weak key in the sense that m = c.
- **b)** Assume that $r \neq 1$ in the following and show that β_1, \ldots, β_n are pairwise different.

Alice encrypts two plaintexts $m \neq m'$ of the same length n with the same key β and obtains two different ciphertexts c and c'. A confidential source tells you that m and m' only differ in one bit position $1 \leq j \leq n$, i.e., $m_j \neq m'_j$ and $m_i = m'_i$ for all $i \neq j$.

c) How can the bit position j be determined?

Bob encrypts a plaintext m of length n = 5. He chooses w_1 at random and uses the rules $w_i = 2w_{i-1} + 1$ for i = 2, ..., n and q = 257. His public key is $\beta = (168, 103, 230, 227, 221)$.

- d) Your confidential source provides $w_4 = 63$ and q = 257. Determine the secret key (\boldsymbol{w}, q, r) for the given $\boldsymbol{\beta}$. Hint: $257 \cdot 7 31 \cdot 58 = 1$.
- e) Now, you receive the ciphertext c = 846. Compute *m* for the given values.