

Dr. Michael Reyer

Tutorial 5 Friday, November 23, 2018

Problem 1. (*CBC and CFB for MAC generation*) Both, the CBC mode and the CFB mode, can be used for the generation of a MAC as follows.

- A plaintext is divided into n equally-sized blocks $M_1, ..., M_n$.
- For the CFB-MAC, the ciphertexts are $C_i = M_{i+1} \oplus E_K(C_{i-1})$ for $i = 1, \ldots, n-1$ and $MAC_K^{(n)} = E_K(C_{n-1})$ with initial value $C_0 = M_1$.
- For the CBC-MAC, the ciphertexts are $\hat{C}_i = E_K(\hat{C}_{i-1} \oplus M_i)$ for $i = 1, \ldots, n-1$ and $\widehat{MAC}_K^{(n)} = E_K(\hat{C}_{n-1} \oplus M_n)$ with initial value $\hat{C}_0 = 0$.

Show that the equivalency $MAC_K^{(n)} = \widehat{MAC}_K^{(n)}$ holds.

Problem 2. (Forging an ElGamal signature for arbitrary hashed messages with $r \ge p$) An attacker has intercepted one valid signature (r, s) of the ElGamal signature scheme and a hashed message h(m) which is invertible modulo p - 1. Let h(m') any hashed message, $u = h(m')(h(m))^{-1} \mod p - 1$ and $s' = s u \mod p - 1$.

Show that the attacker can generate a signature (r', s') for the hashed message h(m'), if $1 \le r < p$ is not verified.

Problem 3. (Forging an ElGamal signature) Let p be prime with $p \equiv 3 \pmod{4}$, and let a be a primitive element modulo p. Furthermore, let $y = a^x \mod p$ be a public ElGamal key and let $a \mid p-1$. Assume that it is possible to find $z \in \mathbb{Z}$ such that $a^{rz} \equiv y^r \pmod{p}$.

Show that (r, s) with $s = (p-3)2^{-1}(h(m) - rz) \mod (p-1)$ yields a valid ElGamal signature for some r and a chosen message m with (h(m) - rz) is even.