Dr. Michael Reyer

## Tutorial 6

Friday, November 30, 2018

Problem 1. (Variations of the ElGamal signature scheme) The ElGamal signature scheme computes the signature as $s=k^{-1}(h(m)-x r) \bmod (p-1)$. Consider the following variations of the ElGamal signature scheme.
a) Consider the signing equation $s=x^{-1}(h(m)-k r) \bmod (p-1)$.

Show that $a^{h(m)} \equiv y^{s} r^{r}(\bmod p)$ is a valid verification procedure.
b) Consider the signing equation $s=x h(m)+k r \bmod (p-1)$.

Propose a valid verification procedure.
c) Consider the signing equation $s=x r+k h(m) \bmod (p-1)$.

Propose a valid verification procedure.

Problem 2. (DSA parameter generation algorithm) Consider the parameter generation algorithm of DSA. It provides a prime $2^{159}<q<2^{160}$ and an integer $0 \leq t \leq 8$ such that for prime $p, 2^{511+64 t}<p<2^{512+64 t}$ and $q \mid p-1$ holds.

The following scheme is given:
(1) Select a random $g \in \mathbb{Z}_{p}^{*}$
(2) Compute $a=g^{\frac{p-1}{q}} \bmod p$
(3) If $a=1$, go to label (1) else return $a$

Prove that $a$ is a generator of the cyclic subgroup of order $q$ in $\mathbb{Z}_{p}^{*}$.

Problem 3. (DSA hash function) For the security of DSA a hash-function is mandatory.
Show that it is possible to forge a signature of a modified scheme where no cryptographic hash function is used.

Hint: A related attack is provided in the lecture notes for the ElGamal signature scheme.

Problem 4. (Probabilistic algorithm for a pair of primes for $D S A$ )
a) Suggest a probabilistic algorithm to determine a pair of primes $p, q$ with

$$
\begin{array}{r}
2^{159}<q<2^{160} \\
2^{1023}<p<2^{1024} \\
q
\end{array}
$$

b) What is the success probability of your algorithm?

Hint: Assume the unproven statement that the number of primes of the form $k q+1, k \in \mathbb{N}$, is asymptotically the number given by the „prime number theorem" divided by $q$.

