Dr. Michael Reyer

Tutorial 10

Friday, January 18, 2019

Problem 1. (Singular points on elliptic curves) Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f:=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X$ and $\partial f / \partial Y$ are zero at P.
Prove for the discriminant Δ of the curve E that the following holds:

$$
\Delta \neq 0 \Leftrightarrow E \text { has no singular points. }
$$

Problem 2. (Working with elliptic curves I) Consider the equation

$$
Y^{2}=X^{3}+X+1
$$

a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_{7}.
b) Determine all points in $E\left(\mathbb{F}_{7}\right)$ and compute the trace t of E.
c) Show that $E\left(\mathbb{F}_{7}\right)$ is cyclic and give a generator.

