



## Dr. Michael Reyer

## Tutorial 13 Wednesday, February 6, 2019

**Problem 1.** (*Rabin cryptosystem*) Consider a Rabin cryptosystem with public key  $n' = p' \cdot q' = 989$ .

a) Check that the given parameters satisfy the Rabin cryptosystem requirements.

Consider a Rabin cryptosystem with another public key  $n = p \cdot q = 161$  with p = 7 and q = 23. In order to be able to identify the correct message, we know that the binary representation of the plaintext m ends with 1111.

- **b)** Decipher the cryptogram c = 116.
- c) Show that the Rabin cryptosystem is vulnerable to chosen-ciphertext attacks.
- d) Which vulnerability has the Rabin cryptosystem if  $m < \sqrt{n}$  holds? How would you resolve this weakness?

**Problem 2.** (Merkle signature scheme)

a) What are the four main requirements for cryptographic hash functions?

Let  $1 < L \in \mathbb{N}$  and  $h(m) = m^2 - 1 \mod L$ ,  $m \in \mathbb{Z}$ , a hash-function.

**b)** Let  $m \in \mathbb{Z}$ . Determine an  $m \neq m' \in \mathbb{Z}$  such that h(m) = h(m').

Consider the following hash-based signature scheme to sign messages  $m \in \mathbb{N}$ . Let bin(m) denote the binary representation of  $m \in \mathbb{N}$ . Assume that bin(m) has n bits.

## **Key Generation**

- 1) Select  $t = n + |\log_2(n)| + 1$  random numbers  $k_i$ .
- 2) Compute  $v_i = h(k_i)$  for all i = 1, ..., t, using a hash function  $h : \mathbb{Z} \to \mathbb{Z}_L$  with  $L \in \mathbb{N}$ .
- 3) The public key is  $(v_1, v_2, ..., v_t)$  and the private key is  $(k_1, k_2, ..., k_t)$ .

## Signature Generation

- 1) Compute  $\hat{c}$ , the binary representation of the number of zeros of  $\hat{m} = bin(m)$ .
- 2) Form the concatenated message  $\hat{w} = \hat{m} || \hat{c} = (a_1, a_2, ..., a_n) || (a_{n+1}, ..., a_t)$  with bits  $a_i$ , for all  $i \leq 1 \leq t$ .
- 3) Determine the positions  $i_1 < i_2 < ... < i_u$  in  $\hat{w}$ , where  $a_{i_j} = 1$ , for all  $1 \le j \le u$ .
- 4) Set  $s_j = k_{i_j}$  for all  $1 \le j \le u$ .
- 5) The signature for m is  $(s_1, s_2, ..., s_u)$ .

Solve the following tasks assuming that bin(m) has n = 5 bits. The private key is given as (6, 36, 27, 24, 12, 3, 9, 34).

- c) Describe a verification of the above signature scheme.
- d) Sign the decimal message m = 10.
- e) Eve intercepts a sequence of signatures from Alice. Which knowledge is needed by Eve to impersonate Alice and sign arbitrary messages?

**Problem 3.** (ElGamal signature scheme) Consider an ElGamal signature scheme. The parameters for the signature scheme are given as

$$p = 113, x = 66, a = 3.$$

- **a**) Show that *a* is a primitive element modulo *p*.
- b) Calculate the ElGamal signature for the hash value h(m) = 77 using the random secret k = 19.
  Hint: k<sup>-1</sup> ≡ 59 (mod p − 1).

From now on we investigate the verification of the ElGamal signature scheme with general parameters.

Assume initially that message m is signed without using a hash function. Oscar chooses  $u, v \in \mathbb{Z}$  with gcd(v, p - 1) = 1. He computes

$$r = a^{u}y^{v} \mod p,$$
  

$$s = -r v^{-1} \mod (p-1).$$

c) Show that (r, s) is a valid signature for the message  $m = s u \mod (p-1)$ .

Oscar knows the signature  $(\hat{r}, \hat{s})$  for the hash value  $h(\hat{m})$ . Let  $h(\hat{m})$  and h(m') be invertible modulo (p-1). Oscar computes

$$r' = \hat{r} (h(m') h(\hat{m})^{-1} p - p + 1) \mod (p (p - 1)),$$
  

$$s' = \hat{s} h(m') h(\hat{m})^{-1} \mod (p - 1).$$

- d) Show that the verification of the signature (r', s') for h(m') provides  $v_1 = v_2$ .
- e) Why does this attack still fail if the verification process is correctly applied?

Problem 4. (Elliptic Curve Cryptography) Consider the equation

$$E_a: Y^2 = X^3 + a X.$$

You want to uniquely map a message  $0 < m < \frac{p}{2}$  to a point  $(x_m, y_m)$  on the elliptic curve  $E_a(\mathbb{F}_p)$ , where p is prime with  $p \equiv 3 \pmod{4}$  and  $x_m \in \{m, p - m\}$ .

- a) Show that such a point exists. Substantiate your answer.
- b) Map the message m = 6 to a point on the elliptic curve  $E_1(\mathbb{F}_{131})$ . Hint: You may use that g = 2 is generator of the field  $\mathbb{F}_{131}$  and  $2^{114} \equiv 91 \pmod{131}$ .

Let p = 7.

- c) Determine all  $a \in \mathbb{F}_7$  such that  $E_a(\mathbb{F}_7)$  describes an elliptic curve.
- **d)** For which  $a \in \mathbb{F}_7$  does the point (3,2) lie on  $E_a(\mathbb{F}_7)$ ?

Let a = 1.

- e) Calculate all points on  $E_1(\mathbb{F}_7)$
- **f)** What is the order and the trace t of  $E_1(\mathbb{F}_7)$ ?
- **g)** Prove that P = (3,3) is a generator of the group. **Hint:** Use  $2 \cdot (3,3) = (1,4)$ .