Homework 9 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 30.06.2011

Exercise 27. Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ the Euler φ-function, i.e., $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.
(a) Determine $\varphi(p)$ for a prime p.
(b) Determine $\varphi\left(p^{k}\right)$ for a prime p and $k \in \mathbb{N}$.
(c) Determine $\varphi(p \cdot q)$ for two different primes $p \neq q$.
(d) Determine $\varphi(4913)$ and $\varphi(899)$.

Exercise 28.

(a) Use the Miller-Rabin Primality Test to prove that 341 is composite.
(b) The Miller-Rabin Primality Test comprises a number of successive squarings.

Suppose a 300 -digit number n is given. How many squarings are needed in worst case during a single run of this primality test?

Exercise 29. Show that 1031 is invertible modulo 2227 and compute the inverse 1031^{-1} in the ring \mathbb{Z}_{2227}.

Exercise 30. Prove the Chinese Remainder Theorem:
Suppose m_{1}, \ldots, m_{r} are pairwise relatively prime, $a_{1}, \ldots, a_{r} \in \mathbb{N}$. The system of r congruences

$$
x \equiv a_{i}\left(\bmod m_{i}\right), \quad i=1, \ldots, r,
$$

has a unique solution modulo $M=\prod_{i=1}^{r} m_{i}$ given by

$$
x=\sum_{i=1}^{r} a_{i} M_{i} y_{i} \quad(\bmod M),
$$

where $M_{i}=M / m_{i}, y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right), i=1, \ldots, r$.

Exercise 31. Solve the following system of linear congruences using the Chinese Remainder Theorem and compute the smallest positive solution:

$$
\begin{aligned}
x & \equiv 3 \\
x & \equiv 5(\bmod 11) \\
x & \equiv 7 \quad(\bmod 13) \\
x & \equiv 9 \\
x & (\bmod 27)
\end{aligned}
$$

