

Problem 24. (determine φ) Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the Euler φ -function, i.e., $\varphi(n) = |\mathbb{Z}_n^*|$.

- **a)** Determine $\varphi(p)$ for a prime p.
- **b)** Determine $\varphi(p^k)$ for a prime p and $k \in \mathbb{N}$.
- c) Determine $\varphi(p \cdot q)$ for two different primes $p \neq q$.
- **d)** Determine $\varphi(4913)$ and $\varphi(899)$.

Problem 25. (*MRPT error probability*) The Miller-Rabin Primality Test (MPRT) is applied m times, with $m \in \mathbb{N}$, to check whether n is prime. The number n is chosen according to a uniform distribution on the odd numbers in $\{N, \ldots, 2N\}, N \in \mathbb{N}$.

a) Show that

RNNTHAACHE

 $P("n \text{ is composite"} | \text{ MRPT returns } m \text{ times "} n \text{ is prime"}) \le \frac{\ln(N) - 2}{\ln(N) - 2 + 2^{2m+1}}.$

b) How many repetitions m are needed to ensure that the above probability stays below 1/1000 for $N = 2^{512}$?

Hint: Assume $P("n \text{ is prime"}) = 2/\ln(N)$.

Problem 26. (*MRPT expected number of tests*) Let $n \in \mathbb{N}$ be odd and composite. Repeat the MRPT with uniformly distributed random numbers $a \in \{2, \ldots, n-1\}$ until the output is "n is composite". Assume that the probability of the test outcome "n is prime" is $\frac{1}{4}$.

- a) Compute the probability, that the number of such tests is equal to M, for $M \in \mathbb{N}$.
- **b**) What is the expected value of the number of tests?

Problem 27. (proof Wilson's primality criterion)

Wilson's primality criterion: An integer n > 1 is prime $\Leftrightarrow (n-1)! \equiv -1 \pmod{n}$.

- a) Prove Wilson's primality criterion.
- b) Check if 29 is a prime number by using the criterion above.
- c) Is this criterion useful in practical applications?