



## Univ.-Prof. Dr. rer. nat. Rudolf Mathar

| 1  | 2  | 3  | 4  | Σ  |
|----|----|----|----|----|
| 19 | 20 | 11 | 20 | 70 |
|    |    |    |    |    |
|    |    |    |    |    |

## Written examination

Tuesday, August 18, 2015, 08:30 a.m.

Name: \_\_\_\_\_\_ Matr.-No.: \_\_\_\_\_

Field of study: \_\_\_\_\_

## Please pay attention to the following:

- 1) The exam consists of **4 problems**. Please check the completeness of your copy. **Only** written solutions on these sheets will be considered. Removing the staples is **not** allowed.
- 2) The exam is passed with at least **35 points**.
- **3)** You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
- 4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
- 5) The results will be published on Monday, the 24.08.15, 16:00h, on the homepage of the institute.

The corrected exams can be inspected on Tuesday, 25.08.15, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Acknowledged:

(Signature)

Problem 1. (19 points)

The following ciphertext over the alphabet  $\mathbb{Z}_{26}$  and total length N = 35 is given:

IAEGO LMCNL AITTC LIISL LFHIA ENTII KGNSG.

a) Calculate the index of coincidence for the given ciphertext. Decide whether the ciphertext was encrypted using a monoalphabetic or polyalphabetic cipher.

The previous ciphertext has been deciphered yielding the following plaintext:

## LIKEALL MAGNIFI CENTTHI NGSITIS LOGICAL.

**b)** Can the resulting ciphertext be described by a permutation scheme of the given plaintext? Substantiate your claim.

The ciphertext is represented by blocks of length v = 5. The blocks are indexed by  $j \in \{1, ..., b\}$  with  $b = \frac{N}{v} = 7$ . The symbol position inside a block is indexed by  $i \in \{1, ..., v\}$ . The secret keys are  $k_1, k_2, ..., k_b \in \{1, ..., b\}$  and it holds  $k_s \neq k_t$  for  $s \neq t$ . A ciphertext symbol is encrypted by  $c_{(j-1)\cdot v+i} = m_{(i-1)\cdot b+k_j}$ .

c) Determine the secret keys  $k_1, k_2, ..., k_b$  for the given pair of plaintext and ciphertext.

A permutation cipher of block length l over an alphabet of size q can be broken by means of a chosen-plaintext attack. Let  $q \leq l$ .

- d) Give a corresponding attack scheme for l = 16 and q = 2 to obtain the key  $\pi$  with at most 4 well-chosen messages of length l. Explain the key idea why your scheme is valid.
- e) Give the minimal number of chosen messages for a valid generalized attack scheme as a function of  $q, l \in \mathbb{N}$ .

Suppose you encrypt a message  $m \in \mathbb{Z}_q$  using an affine cipher  $e_k(m)$  with key  $k = (a, b) \in \mathbb{Z}_q^* \times \mathbb{Z}_q$ .

- f) Compute the *n*-fold encryption  $c = e_{k_n}(...e_{k_2}(e_{k_1}(m))...)$  for different keys  $k_i$  with i = 1, ..., n.
- **g**) Is there an advantage using n subsequent encryptions, rather than using a single affine cipher? Substantiate your claim.

Problem 2. (20 points)

 $C_0$ 

We consider the Data Encryption Standard (DES) algorithm.

- a) Give the names of the four main operations used in a standard building block of DES.
- b) How can the same encryption algorithm of DES be used for decryption?

DES encrypts blocks of 64 bits using a key of 56 bits. For each 7 key bits, one (odd) parity bit for error detection is added. The key of a DES cipher is of the form:

$$K_0 = (k_1, \ldots, k_7, b_1, k_9, \ldots, k_{15}, b_2, k_{17}, \ldots, k_{57}, \ldots, k_{63}, b_8).$$

From this key  $K_0$ , 16 round keys  $K_1, K_2, ..., K_{16}$  are generated. The 56 key bits of  $K_0$  are divided into two blocks  $C_0$  and  $D_0$  of 28 bits each as described in the left table below.

| 1  | 2  | 3  | 4  | 5  | 6        | 7  | $b_1$   |         |    |    |    |          |    |    |
|----|----|----|----|----|----------|----|---------|---------|----|----|----|----------|----|----|
| 9  | 10 | 11 | 12 | 13 | 14       | 15 | $b_2$   |         | [  |    |    | 70       |    |    |
| 17 | 18 | 19 | 20 | 21 | <u> </u> | 23 | $h_{2}$ |         | 14 | 17 | P( | 52<br>24 | 1  | 5  |
| 11 | 10 | 10 | 20 | 21 |          | 20 | 03      |         | 3  | 28 | 15 | 6        | 21 | 10 |
| 25 | 26 | 27 | 28 | 29 | 30       | 31 | $b_4$   |         | 23 | 19 | 12 | 4        | 26 | 8  |
|    |    | l  |    | ]  |          |    |         |         | 16 | 7  | 27 | 20       | 13 | 2  |
| 33 | 34 | 35 | 36 | 37 | 38       | 39 | $b_5$   |         | 41 | 52 | 31 | 37       | 47 | 55 |
|    |    |    |    |    |          |    |         |         | 30 | 40 | 51 | 45       | 33 | 48 |
| 41 | 42 | 43 | 44 | 45 | 46       | 47 | $b_6$   |         | 44 | 49 | 39 | 56       | 34 | 53 |
|    |    |    |    |    |          |    |         |         | 46 | 42 | 50 | 36       | 29 | 32 |
| 49 | 50 | 51 | 52 | 53 | 54       | 55 | $b_7$   | 1       |    |    |    |          |    |    |
| 57 | 58 | 59 | 60 | 61 | 62       | 63 | $b_8$   | $ D_0 $ |    |    |    |          |    |    |

 $C_0$  is read column-wise from 57 to 36 and  $D_0$  column-wise from 63 to 4.

In a second step,  $C_n$  and  $D_n$  for n = 1, ..., 16, are each generated from  $C_{n-1}$  and  $D_{n-1}$  by a cyclic left-shift of  $s_n$  positions, where  $s_n$  is defined by:

$$s_n = \begin{cases} 1, & \text{if } n \in \{1, 2, 9, 16\} \\ 2, & \text{otherwise} \end{cases}$$

From each of these  $(C_n, D_n)$ , with n = 1, ..., 16, one now selects 48 key bits as in the above table PC2 on the right to obtain  $K_n$ .

In the following, a particular pair of keys for DES is considered<sup>1</sup>:

 $K_0 = (\texttt{O1FE O1FE O1FE O1FE}), \quad \hat{K}_0 = (\texttt{FEO1 FEO1 FEO1 FEO1})$ 

- c) Determine  $(C_0, D_0)$  and  $(C_1, D_1)$  from  $K_0$ , and  $(\hat{C}_0, \hat{D}_0)$  and  $(\hat{C}_1, \hat{D}_1)$  from  $\hat{K}_0$ .
- d) Which of the generated subkeys  $K_1, K_2, ..., K_{16}$  are identical when  $K_0$  is used?
- e) Show that  $\text{DES}_{\hat{K}_0}(\text{DES}_{K_0}(M)) = M$  holds for all  $M \in \mathcal{M}$ .

<sup>&</sup>lt;sup>1</sup>The keys are shown in hexadecimal representation.

Consider the following properties of the greatest common divisor for positive integers u and v:

- (i) If u even and v even, then gcd(u, v) = 2 gcd(u/2, v/2).
- (ii) If u even and v odd, then gcd(u, v) = gcd(u/2, v). If u odd and v even, then gcd(u, v) = gcd(u, v/2).
- (iii) If u odd and v odd and  $u \ge v$ , then gcd(u, v) = gcd((u v)/2, v). If u odd and v odd and u < v, then gcd(u, v) = gcd(u, (v - u)/2).
- (iv) gcd(u, 0) = u and gcd(0, v) = v.
  - a) Show that (iii) is a true statement.
  - **b**) Compute gcd(114, 48) using only the given properties.
  - c) Write a recursive algorithm to determine gcd(u, v).

**Hint:** For c) You may use the function:  $IsEven(x) = \begin{cases} true, & \text{if } x \text{ is even,} \\ false, & \text{otherwise.} \end{cases}$ 

We consider an RSA cryptosystem.

a) Why should neither e = 1 nor e = 2 be chosen for RSA with any modulus  $n \in \mathbb{Z}$ ?

Let (e, n) = (73, 105169) be the public key. The public parameters n and e are known and you have intercepted  $\varphi(n) = 104500$ .

**b)** Compute p and q for p > q using  $\varphi(n)$  and compute the private key d.

Let u and v be distinct odd primes, and let  $n = u \cdot v$ . Furthermore, suppose that an integer x satisfies  $gcd(x, u \cdot v) = 1$ .

- c) Show that  $x^{\frac{1}{2}\varphi(n)} \equiv 1 \pmod{u}$  and  $x^{\frac{1}{2}\varphi(n)} \equiv 1 \pmod{v}$ .
- **d)** Show that  $x^{\frac{1}{2}\varphi(n)} \equiv 1 \pmod{n}$ .
- e) Show that if  $ed \equiv 1 \pmod{\frac{1}{2}\varphi(n)}$  holds for two integers d and e, then we obtain  $x^{ed} \equiv x \pmod{n}$ .