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Solution of Problem 1
Proof by contradiction:
Assume there is only a finite number of n primes p1, p2, ..., pn (sorted in an ascending list).
This implies that all other integers (except the pi) greater than one are supposed to be
composite by assumption.
Construct a number composed of the product of all primes plus one:

P =
∏n

i=1 pi + 1 (1)

P > pn and assumed to be composite. As P is composite, it must have at least one prime
factor p with p > 1 so that p|P . As p is assumed to be prime, it holds p|∏n

i=1 pi.
Let us reformulate the above equation (1) to:

P −
∏n

i=1 pi = 1 (2)

Since both p|P and p|∏n
i=1 pi holds, we obtain p|(P −∏n

i=1 pi). However, P −∏n
i=1 pi = 1. It

is obvious that no p > 1 divides 1.  
As a result there is at least one other prime p = pn+1 greater than pn. By induction this
continues for n→ n + 1, so that there are infinitely many primes. �

Solution of Problem 2

a) Define event A : ’n composite’ ⇔ Ā : ’n prime’.
Define event B : m-fold MRPT provides ’n prime’ in all m cases.
From hint: Prob(Ā) = 2

ln(N) ⇒ Prob(A) = 1− 2
ln(N) (cf. Thm. 6.7)

Probability for the case that the MRPT fails for m times:

Prob(B | A) ≤
(1

4

)m

Probability of the MRPT verifying an actual prime is:

Prob(B | Ā) = 1



Probability of the MRPT wrongly verifying a composite n as prime after m tests is:
p = Prob(A | B)

= Prob(B | A) · Prob(A)
Prob(B)

= Prob(B | A) · Prob(A)
Prob(B | A) · Prob(A) + Prob(B | Ā) · Prob(Ā)

≤
(1

4)m(1− 2
ln(N))

(1
4)m(1− 2

ln(N)) + 1 · 2
ln(N)

= ln(N)− 2
ln(N)− 2 + 22m+1

b) Note that the above function f(x) = x
x+a

is monotonically increasing for x ∈ R, a > 0,
as its derivative is f ′(x) = a

(x+a)2 > 0. Let x = ln(N)− 2, and N = 2512.
Resolve the inequality w.r.t. m:

x

x + 22m+1 < 1
1000

⇔ 22m+1 > 999x

⇔ m > 1
2(log2(999x)− 1)

⇔ m > 1
2(log2(999(512 ln(2)− 2))− 1)

⇔ m > 8.714.

m = 9 repetitions are needed to ensure that the error probability stays below p = 1
1000

for N = 2512.

Solution of Problem 3

a) Let n be odd and composite. The problem is modelled by a geometric distributed
random variable X with:

• Probability of a single test stating ’n is prime’ although n is composite is p (⇒ 1−p
for ’n is composite’)
• Probability that after exactly M ∈ N tests, it correctly states ’p is composite’:

Prob(X = M) = pM−1(1− p)

b) The expected value of a geometrically distributed random variable is:

E(X) =
∑∞

M=1 MpM−1(1− p) = (1− p) p

(1− p)2 = p

1− p
,

Note that with the geometric series ∑∞n=0 xn = 1
1−x

, we can compute its derivative w.r.t.
x, and obtain ∑∞n=1 nxn−1 = x

(1−x)2 , for |x| < 1.

For the given parameter p = 1
4 , the expected value for the number of tests stating that

a composite n is indeed composite is:
E(X) = p

1−p
= 1/4

1−1/4
= 1/4

3/4
= 1

3



Solution of Problem 4

a) By the Miller-Rabin Primality Test it will be proven that 341 is composite.
Write n = 341 = 1 + 85 · 22 = 1 + q · 2k.

Algorithm 1 Miller-Rabin Primality Test (MRPT)
Write n = 1 + q2k, q odd
Choose a ∈ {2, . . . , n− 1} uniformly distributed at random
y ← aq mod n
if (y = 1) OR (y = n− 1) then

return “n prime“
end if
for (i← 1; i < k; i++) do

y ← y2 mod n
if (y = n− 1) then

return “n prime“
end if

end for
return “n composite“

Choose a = 2.
Calculate aq mod n, i.e., 285 mod 341.
Note that 210 = 1024 = 3 · 341 + 1 ≡ 1 mod 341.
It follows 285 = (210︸︷︷︸

≡1

)8 · 25︸︷︷︸
=32

≡ 32 mod 341.

Alternatively, 285 mod 341 is calculated by Square and Multiply, see below. As y =
32 /∈ {1, n− 1} the for-loop starts with i = 1.
y2 = 322 = (25)2 = 210 ≡ 1 mod 341, see above.
Furthermore, y = 1 6= 340 mod 341.
As i = 2 = k = 2 the for-loop terminates and n is stated as composite, which is a
reliable result.

b) A number n is decomposed according to MRPT as n = 1+q 2k. It follows that MRPT has
at most k squarings. The worst case occurs, if q = 1, then n = 1 + 2k ⇔ k = log2(n− 1).
With n having 300 digits it follows: n < 10301 = (103︸︷︷︸

<210

)100 · 10︸︷︷︸
<24

< 21004 ⇒ k ≤ 1004.

Consequently, less than 1004 squarings are needed. (k ≈ 999.9)
Note, evaluating aq mod n with Square and Multiply takes t squarings. But as 2t ≤ q
holds, the worst case is reached, for equality which means t = 0, i.e., q = 1, as otherwise
q would be not odd.

Determining 285 mod 341 by Square and Multiply.
It holds a = 2, x = 85 = (1010101)2, i.e., t = 6.
The following tabular denotes the evaluation of the Square and Multiply algorithm. The table
is initialized in the first line with i = t = 6 and y = 1. There are t + 1 lines numbered from t
down to 0. The binary representation of x = (xt. . . . .x0) is given in column two. Using those
values the columns four and five are evaluated row by row. For each row the y value is taken
from the last column of the row above. The final value in the fifth column is the result of ax

mod n.



Algorithm 2 Square and multiply
Require: x = (xt, . . . , x0) ∈ N, a ∈ N
Ensure: ax mod n

1: y ← a
2: for (i = t− 1, i ≥ 0, i--) do
3: y ← y2 mod n
4: if (xi = 1) then
5: y ← y · a mod n
6: end if
7: end for
8: return y

i xi y y2 mod n y2(1 + xi · (a− 1)) mod n
6 1 1 1 2
5 0 2 4 4
4 1 4 16 32
3 0 32 1024 ≡ 1 mod 341 1
2 1 1 1 2
1 0 2 4 4
0 1 4 16 32

The solution is 285 ≡ 32 mod 341.


