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Solution of Problem 1

a) p = 13 is a prime number, a = 5 is a quadratic residue mod p.

) v=0b—4a=0—4-5=10>—20.

Choose: b=5= v =25—-20=5.
With Euler’s criterion, compute: (7) = (Z)=52 =1.
= v = ) is a quadratic residue mod 11. ¢

Choose: b=6=v=36—-20=16=5 mod 11.
= v = 5 is a quadratic residue mod 11. ¢

Choose: b=7T=v=49—-20=29=7 mod 11.

With Euler’s criterion, compute:

(L)=7"% =75 =7°=49-49.7=5-5-7T= —1 mod 11.
= v is a quadratic non-residue modulo 11. v

2) Insert the values for a and b into the polynomial f(z) = z* — Tz + 5.
3) Compute r = 2" mod f(xz):

2% (2 —Tow +5) =" + 72° + 22 — 3
— (2% — 72° + 52)

+ 72° — 52t

— (72° — 5a* 4 22°)
— 227

— (—22° + 32 — 10z)
—32° + 10z

— (=32% + 10z — 4)
4

Hence, r = 4. Furthermore, and —r = =4 =7 mod 11 = (r,—r) = (4,7).
// Validation 7 = @ mod 11 is correct in both cases.

b) Both p, ¢ satisfy the requirement for a Rabin cryptosystem: p,¢g =3 mod 4.
For ¢ mod p = 225 mod 11 = 5, we already know the square roots z,; =4, x,2 = 7.



c)

For ¢ mod ¢ = 225 mod 23 = 18, compute the square roots z, 1, 42 with the auxiliary

' o
parameter k, = ©= = 6:

Tg1=c=18°=18%.18=13-13=8 mod 23,
ZTg2 = —8=15 mod 23.

Formulate tq + sp = 1:

23=2-11+1
=1=23-2-11

We set a = tq = 23 and b = sp = —22. Compute all four possible solutions:

mi = at,; +bry =23-4—-22-8=—-84=169 mod 253 = (...1001), ¢
Mg = atpy +brgo =23-4—-22-15=-238=15 mod 253 = (...1111), 4
Mgt = Ay + brgy =23-7—22-8=—15=238 mod 253 = (...1110), ¢
Moy = aTps + brgs = 23-7—22-15=—169 =84 mod 253 = (...0100) v/

The solution is m = ms; = 84 since it ends on 0100 in the binary representation.
// Checking all solutions yields ¢ = 225.

Since ¢ = 225, one is enabled to compute two square roots in the reals, m = +15. If
naive Nelson chooses 1111, the result m = 15 is obvious, without knowing the factors in



Solution of Problem 2
Decipher m = /¢ mod n with ¢ = 1935.

e Check p,¢g =3 mod 4V

e Compute the square roots of ¢ modulo p and ¢ modulo gq.

p+1 q+1
k:p:T:N, k:q:Tzl&
z,1 =™ =1935" =59 =40 mod 67,
Tpo = —Tp1 =27 mod 67,

Te1 = c’ =1935"% = 18" =36 mod 71,
Tgo = —Tq1 =35 mod 71.

e Compute the resulting square root modulo n. m;; = ax,; + bx,; solves m?. = ¢

i?j
mod n for i,7 € {1,2}. We substitute a = tq and b = sp. Then tq+ sp = 1 yields
1=17-71+ (—18) - 67 = tq + sp from the Extended Euclidean Algorithm.

=a=tqg=17-71=1207 mod n
=b=—sp=—-18-67=—1206 mod n.

The four possible solutions for the square root of ciphertext ¢ modulo n are:

mi1 = azp + bxrgy = 107 mod n = 0000001101011,
mi2 = axp + brye = 1313 mod n = 0010100100001,
M1 = aZpo + bxy1 = 3444 mod n = 0110101110100,
Moo = aTpa + bxyo = 4650 mod n = 1001000101010.

The correct solution is my, by the agreement given in the exercise.



Solution of Problem 3
a) Given x = —z mod p, prove that z =0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

—r =2z modp
& 0=2z modp
& 0=z modp.

]

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p=4q.
i) Alice calculates n = p? and sends n to Bob.

ii) Bob calculates ¢ = 22 mod n and sends ¢ to Alice. With high probability p{ z <
x #Z0 mod p (therefore, Bob almost always loses).

iii) The only two solutions £z are calculated by Alice (see below) and sent to Bob.
Bob cannot factor n, as

ged(0,n) =n

ged(w — (&),n) = {gcd(?x,n) = ged(27,p%) = 1

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p = /n as a real number and win
the game.

Note: The two solutions £z to 22 = ¢ mod p? can be calculated as follows.

Let p be an odd prime and z,y # 0 mod p. If 22 = > mod p?, then 22 = y?> mod p, so
r =+y mod p.

Let x =y mod p. Then
r=y-+ap.

By squaring we get
2 =y + 2apy + (ap)?
= 2 =y? + 2apy mod p*.

2 —

Since 22 = y* mod p?, we obtain

0=2apy mod p?.

Divide by p to get
0=2ay modp.

Since p is odd and p { y, we must have p | a. Therefore, x =y +ap =y mod p*. The case
xr = —y mod p is similar.



In other words, if 22 = y> mod p?, not only x = £y mod p, but also x = £y mod p?. At
this point, we have shown that only two solutions exist.

Now, we show how to find £z, where 22 = ¢ mod p?. As we can find square roots modulo a
prime p, we have x = b solves 22 = ¢ mod p. We want 2> = ¢ mod p?. Square x = b+ ap to
get

b? + 2bap + (ap)* = b* +2bap = ¢ mod p
=0 =c modp.
Since b?> = ¢ mod p the number ¢ — b? is a multiple of p, so we can divide by p and get

c— b?

2ab = mod p.

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

c— b?

p

a= 271 b7 mod p.

Therefore, we have x = b + ap.

This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’'s Lemma.

Example: p =17, p* =49, ¢ = 37. Then

b=c"T =377 =372=4 mod p,
b'=2 modp, 27'=4 modp,
C_b2-2’1~b’1:37_42
D 7

r=b+ap=4+4+3-7=25

a= -4-2=3 modp

Check: 22 = 25? = 37 = ¢ mod p*.



