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Solution of Problem 1

a) p = 13 is a prime number, a = 5 is a quadratic residue mod p.

1) v = b2 − 4a = b2 − 4 · 5 = b2 − 20.

Choose: b = 5⇒ v = 25− 20 = 5.
With Euler’s criterion, compute: (v

p
) = ( 5

11) = 5 10
2 = 1.

⇒ v = 5 is a quadratic residue mod 11.  

Choose: b = 6⇒ v = 36− 20 = 16 ≡ 5 mod 11.
⇒ v = 5 is a quadratic residue mod 11.  

Choose: b = 7⇒ v = 49− 20 = 29 ≡ 7 mod 11.
With Euler’s criterion, compute:
( 7

11) = 7 p−1
2 ≡ 7 10

5 ≡ 75 ≡ 49 · 49 · 7 ≡ 5 · 5 · 7 ≡ −1 mod 11.
⇒ v is a quadratic non-residue modulo 11. X

2) Insert the values for a and b into the polynomial f(x) = x2 − 7x+ 5.

3) Compute r = x
p+1

2 mod f(x):

x6 : (x2 − 7x+ 5) = x4 + 7x3 + 2x− 3
− (x6 − 7x5 + 5x4)
+ 7x5 − 5x4

− (7x5 − 5x4 + 2x3)
− 2x3

− (−2x3 + 3x2 − 10x)
− 3x2 + 10x
− (−3x2 + 10x− 4)
4

Hence, r = 4. Furthermore, and −r = −4 ≡ 7 mod 11⇒ (r,−r) = (4, 7).
// Validation r2 = a mod 11 is correct in both cases.

b) Both p, q satisfy the requirement for a Rabin cryptosystem: p, q ≡ 3 mod 4.
For c mod p ≡ 225 mod 11 ≡ 5, we already know the square roots xp,1 = 4, xp,2 = 7.



For c mod q ≡ 225 mod 23 ≡ 18, compute the square roots xq,1, xq,2 with the auxiliary
parameter kq = q+1

4 = 6:

xq,1 = ckq = 186 = 183 · 183 ≡ 13 · 13 ≡ 8 mod 23,
xq,2 = −8 ≡ 15 mod 23.

Formulate tq + sp = 1:

23 = 2 · 11 + 1
⇒ 1 = 23− 2 · 11

We set a = tq = 23 and b = sp = −22. Compute all four possible solutions:

m11 = axp,1 + bxq,1 = 23 · 4− 22 · 8 = −84 ≡ 169 mod 253⇒ (...1001)2  
m12 = axp,1 + bxq,2 = 23 · 4− 22 · 15 = −238 ≡ 15 mod 253⇒ (...1111)2  
m21 = axp,2 + bxq,1 = 23 · 7− 22 · 8 = −15 ≡ 238 mod 253⇒ (...1110)2  
m22 = axp,2 + bxq,2 = 23 · 7− 22 · 15 = −169 ≡ 84 mod 253⇒ (...0100)2 X

The solution is m = m21 = 84 since it ends on 0100 in the binary representation.
// Checking all solutions yields c = 225.

c) Since c = 225, one is enabled to compute two square roots in the reals, m = ±15. If
naive Nelson chooses 1111, the result m = 15 is obvious, without knowing the factors in
n = pq.



Solution of Problem 2
Decipher m =

√
c mod n with c = 1935.

• Check p, q ≡ 3 mod 4X

• Compute the square roots of c modulo p and c modulo q.

kp = p+ 1
4 = 17, kq = q + 1

4 = 18,

xp,1 = ckp ≡ 193517 ≡ 5917 ≡ 40 mod 67,
xp,2 = −xp,1 ≡ 27 mod 67,
xq,1 = ckq ≡ 193518 ≡ 1818 ≡ 36 mod 71,
xq,2 = −xq,1 ≡ 35 mod 71.

• Compute the resulting square root modulo n. mi,j = axp,i + bxq,j solves m2
i,j ≡ c

mod n for i, j ∈ {1, 2}. We substitute a = tq and b = sp. Then tq + sp = 1 yields
1 = 17 · 71 + (−18) · 67 = tq + sp from the Extended Euclidean Algorithm.

⇒ a ≡ tq ≡ 17 · 71 ≡ 1207 mod n

⇒ b ≡ −sp ≡ −18 · 67 ≡ −1206 mod n.

The four possible solutions for the square root of ciphertext c modulo n are:

m1,1 ≡ axp,1 + bxq,1 ≡ 107 mod n⇒ 0000001101011,
m1,2 ≡ axp,1 + bxq,2 ≡ 1313 mod n⇒ 0010100100001,
m2,1 ≡ axp,2 + bxq,1 ≡ 3444 mod n⇒ 0110101110100,
m2,2 ≡ axp,2 + bxq,2 ≡ 4650 mod n⇒ 1001000101010.

The correct solution is m1, by the agreement given in the exercise.



Solution of Problem 3

a) Given x ≡ −x mod p, prove that x ≡ 0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

−x ≡ x mod p

⇔ 0 ≡ 2x mod p

⇔ 0 ≡ x mod p .

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p = q.

i) Alice calculates n = p2 and sends n to Bob.
ii) Bob calculates c ≡ x2 mod n and sends c to Alice. With high probability p - x⇔

x 6≡ 0 mod p (therefore, Bob almost always loses).
iii) The only two solutions ±x are calculated by Alice (see below) and sent to Bob.

Bob cannot factor n, as

gcd(x− (±x), n) =

gcd(0, n) = n

gcd(2x, n) = gcd(2x, p2) = 1
.

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p =

√
n as a real number and win

the game.

Note: The two solutions ±x to x2 ≡ c mod p2 can be calculated as follows.
Let p be an odd prime and x, y 6≡ 0 mod p. If x2 ≡ y2 mod p2, then x2 ≡ y2 mod p, so
x ≡ ±y mod p.
Let x ≡ y mod p. Then

x = y + αp .

By squaring we get

x2 = y2 + 2αpy + (αp)2

⇒ x2 ≡ y2 + 2αpy mod p2 .

Since x2 ≡ y2 mod p2, we obtain

0 = 2αpy mod p2 .

Divide by p to get
0 = 2αy mod p .

Since p is odd and p - y, we must have p | α. Therefore, x = y + αp ≡ y mod p2. The case
x ≡ −y mod p is similar.



In other words, if x2 ≡ y2 mod p2, not only x ≡ ±y mod p, but also x ≡ ±y mod p2. At
this point, we have shown that only two solutions exist.
Now, we show how to find ±x, where x2 ≡ c mod p2. As we can find square roots modulo a
prime p, we have x = b solves x2 ≡ c mod p. We want x2 ≡ c mod p2. Square x = b+ ap to
get

b2 + 2bap+ (ap)2 ≡ b2 + 2bap ≡ c mod p

⇒ b2 ≡ c mod p .

Since b2 ≡ c mod p the number c− b2 is a multiple of p, so we can divide by p and get

2ab ≡ c− b2

p
mod p .

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

a ≡ c− b2

p
· 2−1 · b−1 mod p .

Therefore, we have x = b+ ap.
This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’s Lemma.
Example: p = 7, p2 = 49, c = 37. Then

b = c
p+1

4 = 37
7+1

4 = 372 ≡ 4 mod p ,

b−1 ≡ 2 mod p , 2−1 ≡ 4 mod p ,

a = c− b2

p
· 2−1 · b−1 = 37− 42

7 · 4 · 2 ≡ 3 mod p

x = b+ ap = 4 + 3 · 7 = 25

Check: x2 = 252 ≡ 37 = c mod p2.


