

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 1 Friday, April 20, 2018

Problem 1. (Dividers) Let $a, b, c, d \in \mathbb{Z}$. The integer a divides b if and only if there exists a $k \in \mathbb{Z}$ such that $a \cdot k = b$. This property is denoted by $a \mid b$. Prove the following implications:

- **a)** $a \mid b$ and $b \mid c \Rightarrow a \mid c$.
- **b)** $a \mid b \text{ and } c \mid d \Rightarrow (ac) \mid (bd).$
- c) $a \mid b \text{ and } a \mid c \implies a \mid (xb + yc) \quad \forall x, y \in \mathbb{Z}.$

Problem 2. (*Permutation Cipher*) The plaintext is an English sentence. A permutation cipher with blocklength 8 revealed the following ciphertext

REXETSIH ONSICESI UCIFTFID REHTLIET

- a) Decrypt the ciphertext and explain your approach.
- **b**) Determine the corresponding permutations π and π^{-1} .

Problem 3. (GCD Multiplicativity) Let $a, b, m \in \mathbb{Z}$. Show that if gcd(a, b) = 1, then gcd(ab, m) = gcd(a, m) gcd(b, m).