

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 6 - Proposed Solution -Friday, June 1, 2018

Solution of Problem 1

a) The bit error occurs in block C_i , i > 0, with block size BS.

mode	M_i	$\max \# err$	remark
ECB	$E_K^{-1}(C_i)$	BS	only block C_i is affected
CBC	$E_K^{-1}(C_i) \oplus C_{i-1}$	BS+1	C_i and one bit in C_{i+1}
OFB	$C_i \oplus Z_i$	1	one bit in C_i , as $Z_0 = C_0, Z_i = E_K(Z_{i-1})$
CFB	$C_i \oplus E_k(C_{i-1})$	BS+1	C_i and one bit in C_{i+1}
CTR	$C_i \oplus E_K(Z_i)$	1	one bit in $C_i, Z_0 = C_0, Z_i = Z_{i-1} + 1$

b) If one bit of the ciphertext is lost or an additional one is inserted in block C_i at position j, all bits beginning with the following positions may be corrupt:

mode	block	position
ECB	i	1
CBC	i	1
OFB	i	j
CFB	i	j
CTR	i	j

In ECB and CBC, all bits of blocks C_i , C_{i+1} may be corrupt.

In OFB, CFB, CTR, all bits beginning at position j of block C_i may be corrupt.

Solution of Problem 2

The given AES-128 key is denoted in hexadecimal representation:

 $K = (2D \ 61 \ 72 \ 69 \ | \ 65 \ 00 \ 76 \ 61 \ | \ 6E \ 00 \ 43 \ 6C \ | \ 65 \ 65 \ 66 \ 66)$

- (a) The round key is $K_0 = K = (W_0 \ W_1 \ W_2 \ W_3)$ with $W_0 = (2D \ 61 \ 72 \ 69), \ W_1 = (65 \ 00 \ 76 \ 61), \ W_2 = (6E \ 00 \ 43 \ 6C), \ W_3 = (65 \ 65 \ 66 \ 66).$
- (b) To calculate the first 4 bytes of round key K_1 recall that $K_1 = (W_4 \ W_5 \ W_6 \ W_7)$. Follow Alg. 1 as given in the lecture notes to calculate W_4 :

Algorithm 1 AES key expansion (applied)

```
for i \leftarrow 4; i < 4 \cdot (r+1); i + 4 do
    Initialize for-loop with i \leftarrow 4. We have r = 1 for K_1.
    tmp \leftarrow W_{i-1}
    tmp \leftarrow W_3 = (65\ 65\ 66\ 66)
    if (i \mod 4 = 0) then
         result is true as i = 4.
         tmp \leftarrow SubBytes(RotByte(tmp)) \oplus Rcon(i/4)
         Evaluate this operation step by step:
         RotByte(tmp) = (65\ 66\ 65\ 65), i.e., a cyclic left shift of one byte
         To compute SubBytes(65 66 66 65) evaluate Table 5.8 for each byte:
         (row 6, col 5) provides 77_{10} = 4D_{16}
         (row 6, col 6) provides 51_{10} = 33_{16}
         Note that the indexation of rows and columns starts with zero.
         SubBytes(65 \ 66 \ 66 \ 65) = (4D \ 33 \ 33 \ 4D)
         i/4 = 1
         \operatorname{Rcon}(1) = (\operatorname{RC}(1) \ 00 \ 00 \ 00), \text{ with } \operatorname{RC}(1) = x^{1-1} = x^0 = 1 \in \mathbb{F}_{2^8}.
         \operatorname{tmp} \leftarrow (4D \ 33 \ 33 \ 4D) \oplus (01 \ 00 \ 00 \ 00) = (4C \ 33 \ 33 \ 4D)
    end if
    W_i \leftarrow W_{i-4} \oplus \operatorname{tmp} W_4 \leftarrow W_0 \oplus \operatorname{tmp.} Then, next iteration, i \leftarrow 5...
end for
```

	$\begin{array}{c} W_0 \\ \mathrm{tmp} \end{array}$	2	D	6	$\frac{1}{3}$	7	2	6	9
\oplus	tmp	4	С	3	3	3	3	4	D
	W_0	0010 0100	1101	0110	0001	0111	0010	0110	1001
\oplus	tmp	0100	1100	0011	0011	0011	0011	0100	1101
	W_4	0110	0001	0101	0010	0100	0001	0010	0100
	W_4	6	1	5	2	4	1	2	4

Solution of Problem 3

Message $\boldsymbol{m} = (m_1 m_2, ..., m_l)$, with $m_i \in \mathbb{F}_2$. Key $\boldsymbol{k} = (k_1 k_2, ..., k_n)$, with $k_i \in \mathbb{F}_2$ and n < l. \Rightarrow Keystream $\boldsymbol{z} = (z_1, z_2, ..., z_l)$

$$z_i = k_i, \quad 1 \le i \le n$$

$$z_i = \sum_{j=1}^n s_j z_{ij} \mod 2, \quad n < i \le l$$

$$c_i = z_i \oplus m_i, \quad 1 \le i \le l$$

- a) Decryption: $m_i = c_i \oplus z_i$
- **b)** If $\mathbf{k} = \mathbf{0} = (00...0)$, it follows $z_i = 0$, $1 \le i \le n$, and $z_i = 0$, $n < i \le l$ and $c_i = m_i$, $1 \le i \le l$. In this case, the plaintext is not encrypted at all.
- c) key length n = 4, key $\mathbf{k} = (0110)$, addition paths $s_1 = s_4 = 1$, $s_2 = s_3 = 0 \Rightarrow \mathbf{s} = (1001)$, stream length l = 20

z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}
0	1	1	0	0	1	0	0	0	1
z_{11}	z_{12}	z_{13}	z_{14}	z_{15}	z_{16}	z_{17}	z_{18}	z_{19}	z_{20}
1	1	1	0	1	0	1	1	Ο	Ο

The summation simplifies to $z_i = \sum_{j=1}^n s_j z_{ij} = z_{i-1} \oplus z_{i-4}, \ 4 < i \leq 20$

- n provide registers 2^n states
- Maximal period: $p_{\max} = 2^n 1 = 15$ (Minor remark: fulfilled if z_i is a *primitive polynomial*)
- The keystream repeats itself at z_{16}

encryption:

m	1011	0001	0100	1101	0100
z	0110	0100	0111	1010	1100
$oxed{m \oplus z}$	1101	0101	0011	0111	1000