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Problem 1. (15 points)

a) (8P) Suppose that P(M̂ = 1) = p and K̂ is uniformly distributed over the key space.
H(M̂), H(K̂), H(Ĉ). and the key equivocation H(K̂ | Ĉ).

H(M̂) = −p log(p)− (1− p) log(1− p)

H(K̂) = log 3
Note that:

P(Ĉ = 1) = P(M̂ = 1, K̂ = k1) = p× 1
3 = p

3
P(Ĉ = 2) = P(M̂ = 1, K̂ = k2) + P(M̂ = 2, K̂ = k1) = p× 1

3 + (1− p)× 1
3 = 1

3
P(Ĉ = 3) = P(M̂ = 1, K̂ = k3) + P(M̂ = 2, K̂ = k2) = p× 1

3 + (1− p)× 1
3 = 1

3
P(Ĉ = 4) = P(M̂ = 2, K̂ = k3) = (1− p)× 1

3 = 1− p
3 .

Hence
H(Ĉ) = −p3 log p3 −

1
3 log 1

3 −
1
3 log 1

3 −
1− p

3 log 1− p
3 .

or
H(Ĉ) = log 3− p

3 log p− 1− p
3 log(1− p).

b) (4P) The key equivocation is given by:

H(K̂ | Ĉ) Thm. 4.7= H(M̂) +H(K̂)−H(Ĉ)

= −p log(p)− (1− p) log(1− p) + log 3 + p

3 log p3
+ 1

3 log 1
3 + 1

3 log 1
3 + 1− p

3 log 1− p
3

= 2
3(−p log(p)− (1− p) log(1− p)).

H(M̂ | Ĉ)=H(Ĉ | M̂) +H(M̂)−H(Ĉ)

= H(Ĉ | M̂)− log 3 + 2
3(−p log(p)− (1− p) log(1− p)).

But P(Ĉ = i | M̂ = j) = 1
3 for all i such that there is a key k for which e(j, k) = i.

Hence:
H(Ĉ | M̂) = log 3.

and

H(M̂ | Ĉ) = 2
3(−p log(p)− (1− p) log(1− p)).

c) (3P) The system does not have a prefect secrecy since H(M̂ | Ĉ) 6= H(M̂).
There is no perfect secrecy achieving key distribution in this case since we have always
|K+| < |C+|.





Problem 2. (15 points)

a) (4P) Suppose that a2 ≡ r2( mod n). Then

pq | (a− r)(a+ r).

First if p | a − r and p | a + r then p | 2r. But gcd(p, 2) = 1 and gcd(p, r) = 1 (since
r ∈ Z∗n). Hence either p | a− r or p | a+ r but not both. Same holds for q.
Now suppose that both p | a− r and q | a− r. But then pq | a− r which means that
a ≡ r( mod n). But this has been excluded. Hence either p - a− r or q - a− r which
means that either p | a+ r or q | a+ r.

Consider an RSA cryptosystem with two prime numbers p = 13 and q = 19. The public key
is given by (n = 13× 19 = 247, e = 59).

b) (4P) The decryption exponent d is the inverse of encryption exponent modulo φ(n).
First

φ(pq) = (p− 1)(q − 1) = 12× 18 = 216.

We fine d = e−1 using extended Euclidean Algorithm.

216 = 3× 59 + 39
59 = 1× 39 + 20
39 = 1× 20 + 19
20 = 1× 19 + 1

Hence

1 = 20− 1× 19
= 20− 1× (39− 20) = −39 + 2× 20
= −39 + 2× (59− 39) = −3× 39 + 2× 59
= 2× 59− 3× (216− 3× 59) = 11× 59− 3× 216

So d = e−1 = 11.

c) (3P) To decrypt the ciphertext c = 10, we need to find c11 mod 247. To use the
Square-and-Multiply Algorithm, we represent 11 in terms of powers of 2.

11 = 23 + 2 + 1 = (1011)2

i xi y y2 mod n y2(1 + xi · (a− 1)) mod n
3 1 1 1 10
2 0 10 100 100
1 1 100 1002 mod 247 = 120 120× 10 mod 247 = 212
0 1 212 2122 mod 247 = 237 237× 10 mod 247 = 147.



Algorithm 1 Square and multiply
Require: x = (xt, . . . , x0) ∈ N, a ∈ N
Ensure: ax mod n

1: y ← a
2: for (i = t− 1, i ≥ 0, i--) do
3: y ← y2 mod n
4: if (xi = 1) then
5: y ← y · a mod n
6: end if
7: end for
8: return y

d) (2P) Suppose that the plaintext m is chosen such that gcd(n,m) = p or q. Then the
ciphertext c = me mod n satisfies gcd(n, c) = p or q. Hence given the ciphertext c, n
can be decomposed into p′ = gcd(n, c) and q′ = n

gcd(n,c) . After the decomposition φ(n)
can be calculated. d = e−1 then is calculated using extended Euclidean Algorithm.

e) (2P) First find gcd(n, c):
gcd(143, 22) = 11.

Using this n is decomposed by n = 11×13 giving φ(n) = 120. d = e−1 then is calculated
using extended Euclidean Algorithm.

120 = 17× 7 + 1.

Hence d = −17 mod 120 = 103.







Problem 3. (15 points)

Message m = (m1m2, ...ml), with mi ∈ F2.
Key k = (k1k2, ...kn), with ki ∈ F2 and n < l. ⇒ Keystream z = (z1, z2, ..., zl)

zi = ki, 1 ≤ i ≤ n

zi =
∑n

j=1 sjzi−j mod 2, n < i ≤ l

ci = zi ⊕mi, 1 ≤ i ≤ l

a) (2P) Decryption: mi = ci ⊕ zi.
If k = 0 = (00...0), it follows zi = 0, 1 ≤ i ≤ n, and zi = 0, n < i ≤ l and
ci = mi, 1 ≤ i ≤ l. In this case, the plaintext is not encrypted at all.

b) (3P) key length n = 4, key k = (0110),
addition paths s1 = s4 = 1, s2 = s3 = 0⇒ s = (1001),
stream length l = 20
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
0 1 1 0 0 1 0 0 0 1
z11 z12 z13 z14 z15 z16 z17 z18 z19 z20
1 1 1 0 1 0 1 1 0 0

The summation simplifies to zi = ∑n
j=1 sjzij = zi−1 ⊕ zi−4, 4 < i ≤ 20

encryption:
m 1011 0001 0100 1101 0100
z 0110 0100 0111 1010 1100

m⊕ z 1101 0101 0011 0111 1000

c) (2P)

• The keystream repeats itself at z16. Thus the period is 15;
• Number of 0s in z: 7, number of 1s in z: 8.
• n provide registers 2n states. Therefore, the maximal period: pmax = 2n − 1 = 15
(Minor remark: fulfilled if zi is a primitive polynomial)

d) (8P) The given figure provides how zi is generated from zi−1, zi−2, and zi−3 in this case:

zi = zi−2 + zi−2

With the formula zi = ∑n
j=1 sjzi−j, with n < i, we obtain s1 = 0, s2 = 1, s3 = 1, and

n = 3, and hence:
f(x) = 1 +

∑n

i=1 six
i = 1 + x2 + x3

To show that f(x) is primitive, we need to check that (xq + 1) with q = 23 − 1 = 7 can



be divided by f(x) with polynomial division without remainder:

(x7 + 1) : (x3 + x2 + 1) = x4 + x3 + x2 + 1
x7 + x6 + x4

x6 + x4 + 1
x6 + x5 + x3

x5 + x4 + x3 + 1
x5 + x4 + x2

x3 + x2 + 1
x3 + x2 + 1
0

Then we need to check that there is no smaller k < q = 7 such that (xk + 1) : p(x) has
no remainder for k = 6, 5, 4, 3, 2, 1:

(x6 + 1) : (x3 + x2 + 1) = x3 + x2 + x+ x2+x+1
x3+x2+1

x6 + x5 + x3

x5 + x3 + 1
x5 + x4 + x2

x4 + x3 + x2 + 1
x4 + x3 + x
x2 + x+ 1 6= 0

(x5 + 1) : (x3 + x2 + 1) = x2 + x+ 1 + x
x3+x2+1

x5 + x4 + x2

x4 + x2 + 1
x4 + x3 + x
x3 + x2 + x+ 1
x3 + x2 + 1
x 6= 0

(x4 + 1) : (x3 + x2 + 1) = x+ 1 + x2+x
x3+x2+1

x4 + x3 + x
x3 + x+ 1
x3 + x2 + 1
x2 + x 6= 0

(x3 + 1) : (x3 + x2 + 1) 6= 0
(x2 + 1) : (x3 + x2 + 1) 6= 0
(x+ 1) : (x3 + x2 + 1) 6= 0

All divisions with k < q have a non-zero remainder. Hence, the polynomial f(x) is
shown to be primitive. (Note that the division is in F2, i.e., the coefficients are 0 or 1
and addition behaves equivalent to substration here.)







Problem 4. (15 points)

a) (2P) Apply the encryption function.

n = p · q = 199 · 211 = 41989 ,
c = eK(32767) = m · (m+B) mod n

= 32767 · (32767 + 1357) mod 41989
≡ 16027 mod 41989

b) (7P) Start with the encryption function and solve for m.

c ≡ m2 +B ·m mod n

c+
(
B

2

)2
≡ m2 +B ·m+

(
B

2

)2
mod n

c+
(
B

2

)2
≡
(
m+ B

2

)2
mod n

Using the Extended Euclidean Algorithm, the multiplicative inverse of 2 modulo n is
calculated as 2−1 ≡ 20995 mod 41989. With

c̃ := c+
(
B

2

)2
mod n

≡ 16027 + (1357 · 20995)2 mod n

≡ 4013 mod n ,

and

m̃ := m+ B

2 mod n

≡ m+ 1357 · 20995 mod n

≡ m+ 21673 mod n ,

we can conclude

c̃ ≡ m̃2 mod n

4013 ≡ m̃2 mod n .

This form is the standard Rabin Cryptosystem. In order to find the square root modulo
n, we use Proposition 9.4. First, find

1 = s · p︸︷︷︸
=:b

+ t · q︸︷︷︸
=:a



using the Extended Euclidean Algorithm.

211 = 1 · 199 + 12
199 = 16 · 12 + 7
12 = 1 · 7 + 5
7 = 1 · 5 + 2
5 = 2 · 2 + 1

⇒ 1 = 5− 2 · 2
= 5− 2 · (7− 1 · 5) = 3 · 5− 2 · 7
= 3 · (12− 1 · 7)− 2 · 7 = 3 · 12− 5 · 7
= 3 · 12− 5 · (199− 16 · 12) = 83 · 12− 5 · 199
= 83 · (211− 1 · 199)− 5 · 199 = 83 · 211− 88 · 199

⇒ b = −88 · 199 = −17512
a = 83 · 211 = 17513

Next, we calculate the square roots modulo p and q (this is Proposion 9.3).

x2 ≡ 4013 ≡ 33 mod p

⇒ x1 = 33
p+1

4 = 3350 ≡ 86 mod 199
x2 = −x1 ≡ 113 mod 199 ,
y2 ≡ 4013 ≡ 4 mod q

⇒ y1 = 4
q+1

4 = 453 ≡ 209 mod 211
y2 = −y1 = 2 mod 211

Then, fxi,yj
= axi + byj are solutions to f 2 = 4013 mod n.

fx1,y1 = a · x1 + b · y1 mod n

≡ 17513 · 86− 17512 · 209 mod 41989
≡ 36503− 6965 mod 41989
≡ 29538 mod 41989

fx1,y2 = 17513 · 86− 17512 · 2 mod 41989
≡ 36503− 35024 mod 41989
≡ 1479 mod 41989

fx2,y1 = 17513 · 113− 17512 · 209 mod 41989
≡ 5486− 6965 mod 41989
≡ 40510 ≡ −fx1,y2 mod 41989

fx2,y2 = 17513 · 113− 17512 · 2 mod 41989
≡ 5486− 35024 mod 41989
≡ 12451 ≡ −fx1,y1 mod 41989



With

m̃2 ≡ c̃ mod n

m̃ ≡ fxi,yj
mod n

mxi,yj
+ 21673 ≡ fxi,yj

mod n

mxi,yj
≡ fxi,yj

− 21673 mod n

the four possible messages can now be calculated.

mx1,y1 = 29538− 21673 ≡ 7865 mod n

mx1,y2 = 1479− 21673 ≡ 21795 mod n

mx2,y1 = 40510− 21673 ≡ 18837 mod n

mx2,y2 = 12451− 21673 ≡ 32767 mod n

Message mx2,y2 is the original one, but, knowing only the cryptogram and the private
key, this message cannot be identified as the original one.

Shamir’s no-key protocol with the parameters: p = 31883, a = 8647, b = 10931, c1 = 26843.

c) (6P)

c2 = cb
1 mod p = 2684310931 mod 31883 ≡ 27084

c3 = ca−1

2 mod p = 2708430315 mod 31883 ≡ 13230 (given by hint)
m = cb−1

3 mod p = 1323035 mod 31883 ≡ 15369 (Calculator-solvable)
c1 = ma mod p = 153698647 mod 31883 ≡ 26843 (To verify the solution)

To compute c2 we use the square-and-multiply algorithm (SAM) (in chart):
The binary representation of b = 10931 is 101010101100112.

op exp modulo
1 1 26843
S 0 22732

SM 1 30451
S 0 10112

SM 1 4865
S 0 11039

SM 1 31241
S 0 29568

SM 1 18408
SM 1 10481
S 0 14426
S 0 9135

SM 1 24741
SM 1 27084

To compute a−1 modulo p − 1, we first derive equations from Extended Euclidean



Algorithm (EEA) as follows:

31882 = 3× 8647 + 5941
8647 = 5941 + 2705
5941 = 2× 2706 + 529
2706 = 5× 529 + 61
529 = 8× 61 + 41
61 = 41 + 20
41 = 2× 20 + 1⇒ gcd(31882, 8647) = 1,

then we substitute the factors backwards:

1 = 41− 2× 20
= 41− 2× (61− 41) = 3× 41− 2× 61
= 3× (529− 8× 61)− 2× 61 = 3× 529− 26× 61
= 133× 529− 26× 2706
= 133× 5941− 292× 2706
= 425× 5941− 292× 8647
= 425 · 31882−1567︸ ︷︷ ︸

a−1

× 8647︸ ︷︷ ︸
a

Hence a−1 = −1567 ≡ 30315 mod (p− 1). Similarly, b−1 = 35
Hint: Check if result is equal to one in each step!
The exchanged value c3 = ca−1

2 mod p = 2708430315 mod 31883 ≡ 13230 is given in the
question. Thus, the message is m = cb−1

3 mod p = 1323035 mod 31883 ≡ 15369 which
can be computed by the calculator or by the SAM algorithm.
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