Univ.-Prof. Dr. rer. nat. Rudolf Mathar

1	2	3	4	\sum
$\boxed{15}$	$\boxed{15}$	$\boxed{15}$	$\boxed{15}$	$\boxed{60}$

Written Examination

Cryptography
Tuesday, August 29, 2017, 01:30 p.m.

Name: \qquad Matr.-No.: \qquad
Field of study: \qquad

Please pay attention to the following:

1) The exam consists of 4 problems. Please check the completeness of your copy. Only written solutions on these sheets will be considered. Removing the staples is not allowed.
2) The exam is passed with at least $\mathbf{3 0}$ points.
3) You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
5) The results will be published on Wednesday, the $06.09 .17,16: 00 \mathrm{~h}$, on the homepage of the institute.

The corrected exams can be inspected on Friday, 08.09.17, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.
a) (8P) Suppose that $\mathbb{P}(\hat{M}=1)=p$ and \hat{K} is uniformly distributed over the key space. $H(\hat{M}), H(\hat{K}), H(\hat{C})$. and the key equivocation $H(\hat{K} \mid \hat{C})$.

$$
\begin{gathered}
H(\hat{M})=-p \log (p)-(1-p) \log (1-p) \\
H(\hat{K})=\log 3
\end{gathered}
$$

Note that:

$$
\begin{aligned}
& \mathbb{P}(\hat{C}=1)=\mathbb{P}\left(\hat{M}=1, \hat{K}=k_{1}\right)=p \times \frac{1}{3}=\frac{p}{3} \\
& \mathbb{P}(\hat{C}=2)=\mathbb{P}\left(\hat{M}=1, \hat{K}=k_{2}\right)+\mathbb{P}\left(\hat{M}=2, \hat{K}=k_{1}\right)=p \times \frac{1}{3}+(1-p) \times \frac{1}{3}=\frac{1}{3} \\
& \mathbb{P}(\hat{C}=3)=\mathbb{P}\left(\hat{M}=1, \hat{K}=k_{3}\right)+\mathbb{P}\left(\hat{M}=2, \hat{K}=k_{2}\right)=p \times \frac{1}{3}+(1-p) \times \frac{1}{3}=\frac{1}{3} \\
& \mathbb{P}(\hat{C}=4)=\mathbb{P}\left(\hat{M}=2, \hat{K}=k_{3}\right)=(1-p) \times \frac{1}{3}=\frac{1-p}{3} .
\end{aligned}
$$

Hence

$$
H(\hat{C})=-\frac{p}{3} \log \frac{p}{3}-\frac{1}{3} \log \frac{1}{3}-\frac{1}{3} \log \frac{1}{3}-\frac{1-p}{3} \log \frac{1-p}{3} .
$$

or

$$
H(\hat{C})=\log 3-\frac{p}{3} \log p-\frac{1-p}{3} \log (1-p)
$$

b) (4P) The key equivocation is given by:

$$
\begin{aligned}
H(\hat{K} \mid \hat{C}) & \stackrel{\text { Thm }}{=}{ }^{4 \cdot 7} H(\hat{M})+H(\hat{K})-H(\hat{C}) \\
& =-p \log (p)-(1-p) \log (1-p)+\log 3+\frac{p}{3} \log \frac{p}{3} \\
& +\frac{1}{3} \log \frac{1}{3}+\frac{1}{3} \log \frac{1}{3}+\frac{1-p}{3} \log \frac{1-p}{3} \\
& =\frac{2}{3}(-p \log (p)-(1-p) \log (1-p)) .
\end{aligned}
$$

$$
\begin{aligned}
H(\hat{M} \mid \hat{C}) & =H(\hat{C} \mid \hat{M})+H(\hat{M})-H(\hat{C}) \\
& =H(\hat{C} \mid \hat{M})-\log 3+\frac{2}{3}(-p \log (p)-(1-p) \log (1-p)) .
\end{aligned}
$$

But $\mathbb{P}(\hat{C}=i \mid \hat{M}=j)=\frac{1}{3}$ for all i such that there is a key k for which $e(j, k)=i$. Hence:

$$
H(\hat{C} \mid \hat{M})=\log 3
$$

and

$$
H(\hat{M} \mid \hat{C})=\frac{2}{3}(-p \log (p)-(1-p) \log (1-p))
$$

c) (3P) The system does not have a prefect secrecy since $H(\hat{M} \mid \hat{C}) \neq H(\hat{M})$.

There is no perfect secrecy achieving key distribution in this case since we have always $\left|\mathcal{K}_{+}\right|<\left|\mathcal{C}_{+}\right|$.

Problem 2. (15 points)
a) (4P) Suppose that $a^{2} \equiv r^{2}(\bmod n)$. Then

$$
p q \mid(a-r)(a+r) .
$$

First if $p \mid a-r$ and $p \mid a+r$ then $p \mid 2 r$. But $\operatorname{gcd}(p, 2)=1$ and $\operatorname{gcd}(p, r)=1($ since $r \in \mathbb{Z}_{n}^{*}$). Hence either $p \mid a-r$ or $p \mid a+r$ but not both. Same holds for q.
Now suppose that both $p \mid a-r$ and $q \mid a-r$. But then $p q \mid a-r$ which means that $a \equiv r(\bmod n)$. But this has been excluded. Hence either $p \nmid a-r$ or $q \nmid a-r$ which means that either $p \mid a+r$ or $q \mid a+r$.

Consider an RSA cryptosystem with two prime numbers $p=13$ and $q=19$. The public key is given by ($n=13 \times 19=247, e=59$).
b) (4P) The decryption exponent d is the inverse of encryption exponent modulo $\phi(n)$. First

$$
\phi(p q)=(p-1)(q-1)=12 \times 18=216 .
$$

We fine $d=e^{-1}$ using extended Euclidean Algorithm.

$$
\begin{aligned}
216 & =3 \times 59+39 \\
59 & =1 \times 39+20 \\
39 & =1 \times 20+19 \\
20 & =1 \times 19+1
\end{aligned}
$$

Hence

$$
\begin{aligned}
1 & =20-1 \times 19 \\
& =20-1 \times(39-20)=-39+2 \times 20 \\
& =-39+2 \times(59-39)=-3 \times 39+2 \times 59 \\
& =2 \times 59-3 \times(216-3 \times 59)=11 \times 59-3 \times 216
\end{aligned}
$$

So $d=e^{-1}=11$.
c) (3P) To decrypt the ciphertext $c=10$, we need to find $c^{11} \bmod 247$. To use the Square-and-Multiply Algorithm, we represent 11 in terms of powers of 2.

$$
11=2^{3}+2+1=(1011)_{2}
$$

| i | x_{i} | y | $y^{2} \bmod n$ | $y^{2}\left(1+x_{i} \cdot(a-1)\right) \bmod n$ |
| :---: | ---: | ---: | ---: | ---: | :--- |
| 3 | 1 | 1 | 1 | 10 |
| 2 | 0 | 10 | 100 | 100 |
| 1 | 1 | 100 | $100^{2} \bmod 247=120$ | $120 \times 10 \bmod 247=212$ |
| 0 | 1 | 212 | $212^{2} \bmod 247=237$ | $237 \times 10 \bmod 247=147$. |

```
Algorithm 1 Square and multiply
Require: \(x=\left(x_{t}, \ldots, x_{0}\right) \in \mathbb{N}, a \in \mathbb{N}\)
Ensure: \(a^{x} \bmod n\)
    \(y \leftarrow a\)
    for \((i=t-1, i \geq 0, i--)\) do
        \(y \leftarrow y^{2} \bmod n\)
        if \(\left(x_{i}=1\right)\) then
            \(y \leftarrow y \cdot a \bmod n\)
        end if
    end for
    return \(y\)
```

d) (2P) Suppose that the plaintext m is chosen such that $\operatorname{gcd}(n, m)=p$ or q. Then the ciphertext $c=m^{e} \bmod n$ satisfies $\operatorname{gcd}(n, c)=p$ or q. Hence given the ciphertext c, n can be decomposed into $p^{\prime}=\operatorname{gcd}(n, c)$ and $q^{\prime}=\frac{n}{\operatorname{gcd}(n, c)}$. After the decomposition $\phi(n)$ can be calculated. $d=e^{-1}$ then is calculated using extended Euclidean Algorithm.
e) (2P) First find $\operatorname{gcd}(n, c)$:

$$
\operatorname{gcd}(143,22)=11
$$

Using this n is decomposed by $n=11 \times 13$ giving $\phi(n)=120 . d=e^{-1}$ then is calculated using extended Euclidean Algorithm.

$$
120=17 \times 7+1 .
$$

Hence $d=-17 \bmod 120=103$.

Problem 3. (15 points)

Message $\boldsymbol{m}=\left(m_{1} m_{2}, \ldots m_{l}\right)$, with $m_{i} \in \mathbb{F}_{2}$.
Key $\boldsymbol{k}=\left(k_{1} k_{2}, \ldots k_{n}\right)$, with $k_{i} \in \mathbb{F}_{2}$ and $n<l . \Rightarrow$ Keystream $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{l}\right)$

$$
\begin{aligned}
& z_{i}=k_{i}, \quad 1 \leq i \leq n \\
& z_{i}=\sum_{j=1}^{n} s_{j} z_{i-j} \quad \bmod 2, \quad n<i \leq l \\
& c_{i}=z_{i} \oplus m_{i}, \quad 1 \leq i \leq l
\end{aligned}
$$

a) (2P) Decryption: $m_{i}=c_{i} \oplus z_{i}$.

If $\boldsymbol{k}=\mathbf{0}=(00 \ldots 0)$, it follows $z_{i}=0, \quad 1 \leq i \leq n$, and $z_{i}=0, \quad n<i \leq l$ and $c_{i}=m_{i}, \quad 1 \leq i \leq l$. In this case, the plaintext is not encrypted at all.
b) (3P) key length $n=4$, key $\boldsymbol{k}=(0110)$,
addition paths $s_{1}=s_{4}=1, s_{2}=s_{3}=0 \Rightarrow \boldsymbol{s}=(1001)$,
stream length $l=20$

z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}	z_{8}	z_{9}	z_{10}
0	1	1	0	0	1	0	0	0	1
z_{11}	z_{12}	z_{13}	z_{14}	z_{15}	z_{16}	z_{17}	z_{18}	z_{19}	z_{20}
1	1	1	0	1	0	1	1	0	0

The summation simplifies to $z_{i}=\sum_{j=1}^{n} s_{j} z_{i j}=z_{i-1} \oplus z_{i-4}, 4<i \leq 20$
encryption:

\boldsymbol{m}	1011	0001	0100	1101	0100
\boldsymbol{z}	0110	0100	0111	1010	1100
$\boldsymbol{m} \oplus \boldsymbol{z}$	1101	0101	0011	0111	1000

c) $(2 \mathrm{P})$

- The keystream repeats itself at z_{16}. Thus the period is 15 ;
- Number of 0 s in $z: 7$, number of 1 s in $z: 8$.
- n provide registers 2^{n} states. Therefore, the maximal period: $p_{\max }=2^{n}-1=15$ (Minor remark: fulfilled if z_{i} is a primitive polynomial)
d) $(8 \mathbf{P})$ The given figure provides how z_{i} is generated from z_{i-1}, z_{i-2}, and z_{i-3} in this case:

$$
z_{i}=z_{i-2}+z_{i-2}
$$

With the formula $z_{i}=\sum_{j=1}^{n} s_{j} z_{i-j}$, with $n<i$, we obtain $s_{1}=0, s_{2}=1, s_{3}=1$, and $n=3$, and hence:

$$
f(x)=1+\sum_{i=1}^{n} s_{i} x^{i}=1+x^{2}+x^{3}
$$

To show that $f(x)$ is primitive, we need to check that $\left(x^{q}+1\right)$ with $q=2^{3}-1=7$ can
be divided by $f(x)$ with polynomial division without remainder:

$\left(x^{7}+1\right):\left(x^{3}+x^{2}+1\right)=x^{4}+x^{3}+x^{2}+1$
$x^{7}+x^{6}+x^{4}$
$x^{6}+x^{4}+1$
$x^{6}+x^{5}+x^{3}$
$x^{5}+x^{4}+x^{3}+1$
$x^{5}+x^{4}+x^{2}$
$x^{3}+x^{2}+1$
$x^{3}+x^{2}+1$
0

Then we need to check that there is no smaller $k<q=7$ such that $\left(x^{k}+1\right): p(x)$ has no remainder for $k=6,5,4,3,2,1$:

$\left(x^{6}+1\right):\left(x^{3}+x^{2}+1\right)=x^{3}+x^{2}+x+\frac{x^{2}+x+1}{x^{3}+x^{2}+1}$
$x^{6}+x^{5}+x^{3}$
$x^{5}+x^{3}+1$
$x^{5}+x^{4}+x^{2}$
$x^{4}+x^{3}+x^{2}+1$
$x^{4}+x^{3}+x$
$x^{2}+x+1 \neq 0$
$\left(x^{5}+1\right):\left(x^{3}+x^{2}+1\right)=x^{2}+x+1+\frac{x}{x^{3}+x^{2}+1}$
$x^{5}+x^{4}+x^{2}$
$x^{4}+x^{2}+1$
$x^{4}+x^{3}+x$
$x^{3}+x^{2}+x+1$
$x^{3}+x^{2}+1$
$x \neq 0$
$\left(x^{4}+1\right):\left(x^{3}+x^{2}+1\right)=x+1+\frac{x^{2}+x}{x^{3}+x^{2}+1}$
$x^{4}+x^{3}+x$
$x^{3}+x+1$
$x^{3}+x^{2}+1$
$x^{2}+x \neq 0$
$\left(x^{3}+1\right):\left(x^{3}+x^{2}+1\right) \neq 0$
$\left(x^{2}+1\right):\left(x^{3}+x^{2}+1\right) \neq 0$
$(x+1):\left(x^{3}+x^{2}+1\right) \neq 0$

All divisions with $k<q$ have a non-zero remainder. Hence, the polynomial $f(x)$ is shown to be primitive. (Note that the division is in \mathbb{F}_{2}, i.e., the coefficients are 0 or 1 and addition behaves equivalent to substration here.)

Problem 4. (15 points)
a) (2P) Apply the encryption function.

$$
\begin{aligned}
n & =p \cdot q=199 \cdot 211=41989, \\
c & =e_{K}(32767)=m \cdot(m+B) \quad \bmod n \\
& =32767 \cdot(32767+1357) \quad \bmod 41989 \\
& \equiv 16027 \bmod 41989
\end{aligned}
$$

b) (7P) Start with the encryption function and solve for m.

$$
\begin{aligned}
c & \equiv m^{2}+B \cdot m \quad \bmod n \\
c+\left(\frac{B}{2}\right)^{2} & \equiv m^{2}+B \cdot m+\left(\frac{B}{2}\right)^{2} \quad \bmod n \\
c+\left(\frac{B}{2}\right)^{2} & \equiv\left(m+\frac{B}{2}\right)^{2} \quad \bmod n
\end{aligned}
$$

Using the Extended Euclidean Algorithm, the multiplicative inverse of 2 modulo n is calculated as $2^{-1} \equiv 20995 \bmod 41989$. With

$$
\begin{aligned}
\tilde{c} & :=c+\left(\frac{B}{2}\right)^{2} \bmod n \\
& \equiv 16027+(1357 \cdot 20995)^{2} \quad \bmod n \\
& \equiv 4013 \bmod n,
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{m} & :=m+\frac{B}{2} \quad \bmod n \\
& \equiv m+1357 \cdot 20995 \quad \bmod n \\
& \equiv m+21673 \quad \bmod n,
\end{aligned}
$$

we can conclude

$$
\begin{aligned}
\tilde{c} & \equiv \tilde{m}^{2} & \bmod n \\
4013 & \equiv \tilde{m}^{2} & \bmod n
\end{aligned}
$$

This form is the standard Rabin Cryptosystem. In order to find the square root modulo n, we use Proposition 9.4. First, find

$$
1=\underbrace{s \cdot p}_{=: b}+\underbrace{t \cdot q}_{=: a}
$$

using the Extended Euclidean Algorithm.

$$
\begin{aligned}
211 & =1 \cdot 199+12 \\
199 & =16 \cdot 12+7 \\
12 & =1 \cdot 7+5 \\
7 & =1 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
\Rightarrow 1 & =5-2 \cdot 2 \\
& =5-2 \cdot(7-1 \cdot 5)=3 \cdot 5-2 \cdot 7 \\
& =3 \cdot(12-1 \cdot 7)-2 \cdot 7=3 \cdot 12-5 \cdot 7 \\
& =3 \cdot 12-5 \cdot(199-16 \cdot 12)=83 \cdot 12-5 \cdot 199 \\
& =83 \cdot(211-1 \cdot 199)-5 \cdot 199=83 \cdot 211-88 \cdot 199 \\
\Rightarrow b & =-88 \cdot 199=-17512 \\
a & =83 \cdot 211=17513
\end{aligned}
$$

Next, we calculate the square roots modulo p and q (this is Proposion 9.3).

$$
\begin{aligned}
x^{2} & \equiv 4013 \equiv 33 \quad \bmod p \\
\Rightarrow x_{1} & =33^{\frac{p+1}{4}}=33^{50} \equiv 86 \quad \bmod 199 \\
x_{2} & =-x_{1} \equiv 113 \quad \bmod 199 \\
y^{2} & \equiv 4013 \equiv 4 \quad \bmod q \\
\Rightarrow y_{1} & =4^{\frac{q+1}{4}}=4^{53} \equiv 209 \quad \bmod 211 \\
y_{2} & =-y_{1}=2 \quad \bmod 211
\end{aligned}
$$

Then, $f_{x_{i}, y_{j}}=a x_{i}+b y_{j}$ are solutions to $f^{2}=4013 \bmod n$.

$$
\begin{aligned}
f_{x_{1}, y_{1}} & =a \cdot x_{1}+b \cdot y_{1} \quad \bmod n \\
& \equiv 17513 \cdot 86-17512 \cdot 209 \quad \bmod 41989 \\
& \equiv 36503-6965 \quad \bmod 41989 \\
& \equiv 29538 \quad \bmod 41989 \\
f_{x_{1}, y_{2}} & =17513 \cdot 86-17512 \cdot 2 \quad \bmod 41989 \\
& \equiv 36503-35024 \quad \bmod 41989 \\
& \equiv 1479 \quad \bmod 41989 \\
f_{x_{2}, y_{1}} & =17513 \cdot 113-17512 \cdot 209 \quad \bmod 41989 \\
& \equiv 5486-6965 \quad \bmod 41989 \\
& \equiv 40510 \equiv-f_{x_{1}, y_{2}} \quad \bmod 41989 \\
f_{x_{2}, y_{2}} & =17513 \cdot 113-17512 \cdot 2 \bmod 41989 \\
& \equiv 5486-35024 \quad \bmod 41989 \\
& \equiv 12451 \equiv-f_{x_{1}, y_{1}} \quad \bmod 41989
\end{aligned}
$$

With

$$
\begin{aligned}
\tilde{m}^{2} & \equiv \tilde{c} \quad \bmod n \\
\tilde{m} & \equiv f_{x_{i}, y_{j}} \quad \bmod n \\
m_{x_{i}, y_{j}}+21673 & \equiv f_{x_{i}, y_{j}} \quad \bmod n \\
m_{x_{i}, y_{j}} & \equiv f_{x_{i}, y_{j}}-21673 \quad \bmod n
\end{aligned}
$$

the four possible messages can now be calculated.

$$
\begin{aligned}
& m_{x_{1}, y_{1}}=29538-21673 \equiv 7865 \quad \bmod n \\
& m_{x_{1}, y_{2}}=1479-21673 \equiv 21795 \quad \bmod n \\
& m_{x_{2}, y_{1}}=40510-21673 \equiv 18837 \quad \bmod n \\
& m_{x_{2}, y_{2}}=12451-21673 \equiv 32767 \quad \bmod n
\end{aligned}
$$

Message $m_{x_{2}, y_{2}}$ is the original one, but, knowing only the cryptogram and the private key, this message cannot be identified as the original one.

Shamir's no-key protocol with the parameters: $p=31883, a=8647, b=10931, c_{1}=26843$.
c) $(6 \mathrm{P})$

$$
\begin{aligned}
& c_{2}=c_{1}^{b} \quad \bmod p=26843^{10931} \quad \bmod 31883 \equiv 27084 \\
& c_{3}=c_{2}^{a^{-1}} \quad \bmod p=27084^{30315} \quad \bmod 31883 \equiv 13230 \text { (given by hint) } \\
& m=c_{3}^{b^{-1}} \quad \bmod p=13230^{35} \quad \bmod 31883 \equiv 15369 \text { (Calculator-solvable) } \\
& c_{1}=m^{a} \quad \bmod p=15369^{8647} \quad \bmod 31883 \equiv 26843 \text { (To verify the solution) }
\end{aligned}
$$

To compute c_{2} we use the square-and-multiply algorithm (SAM) (in chart):
The binary representation of $b=10931$ is 10101010110011_{2}.

op	exp	modulo
1	1	26843
S	0	22732
SM	1	30451
S	0	10112
SM	1	4865
S	0	11039
SM	1	31241
S	0	29568
SM	1	18408
SM	1	10481
S	0	14426
S	0	9135
SM	1	24741
SM	1	27084

To compute a^{-1} modulo $p-1$, we first derive equations from Extended Euclidean

Algorithm (EEA) as follows:

$$
\begin{aligned}
31882 & =3 \times 8647+5941 \\
8647 & =5941+2705 \\
5941 & =2 \times 2706+529 \\
2706 & =5 \times 529+61 \\
529 & =8 \times 61+41 \\
61 & =41+20 \\
41 & =2 \times 20+1 \Rightarrow \operatorname{gcd}(31882,8647)=1,
\end{aligned}
$$

then we substitute the factors backwards:

$$
\begin{aligned}
1 & =41-2 \times 20 \\
& =41-2 \times(61-41)=3 \times 41-2 \times 61 \\
& =3 \times(529-8 \times 61)-2 \times 61=3 \times 529-26 \times 61 \\
& =133 \times 529-26 \times 2706 \\
& =133 \times 5941-292 \times 2706 \\
& =425 \times 5941-292 \times 8647 \\
& =425 \cdot 31882 \underbrace{-1567}_{a^{-1}} \times \underbrace{8647}_{a}
\end{aligned}
$$

Hence $a^{-1}=-1567 \equiv 30315 \bmod (p-1)$. Similarly, $b^{-1}=35$
Hint: Check if result is equal to one in each step!
The exchanged value $c_{3}=c_{2}^{a^{-1}} \bmod p=27084^{30315} \bmod 31883 \equiv 13230$ is given in the question. Thus, the message is $m=c_{3}^{b^{-1}} \bmod p=13230^{35} \bmod 31883 \equiv 15369$ which can be computed by the calculator or by the SAM algorithm.

Additional sheet
Problem:

Additional sheet
Problem:

Additional sheet
Problem:

