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1 Introduction

With the mass deployment of long-term evolution (LTE) systems, the wireless cellu-
lar network has evolved to the 4th generation (4G). The 4G mobile standards aim
at providing ubiquitous connectivity and high data rate services. To avoid coverage
holes, sophisticated algorithms for antenna tilting, handover and load balancing are
implemented. To serve densely located indoor users, small cell technologies are de-
veloped. To increase spectrum efficiency, radio resource management is performed.
To minimize manual effort in adjusting network performance, self-organizing network
(SON) schemes are proposed. All these functionalities make the design of network
controlling strategies more challenging than ever. In order to tackle various problems
during deployment and operation by numerical analysis, the cellular network has to
be modeled properly.

Due to the limitation of the computational power and memory, modeling a cellular
network from head to toe is extremely difficult, if possible at all. Therefore, the
modeling methodology is usually divided into two levels, namely, link level modeling
and network level modeling. Link level modeling concentrates on characterizing com-
munication channels between transmitter-receiver pairs, while network level modeling
focuses on describing communication networks on a larger scale.

In this dissertation, strategies on both link and network level for wireless network
control are investigated, with emphasising on the application to LTE systems. To ac-
complish this task, link level modeling of wireless channels is presented first. Based on
the link level models, channel state information (CSI) feedback strategies are studied.
As a feature of SON, future trends of wireless network control depend heavily on the
real time status of the network. A majority of status data comes from user reports.
However, due to the inevitable delay of wireless transmission, the feedback informa-
tion will be outdated. Therefore, proper strategies for compensating the feedback delay
are proposed in this dissertation. Furthermore, with the feedback information, self-
organizing network control strategies can be deployed. Self-organizing network control
strategies cover many different areas including handover optimization, load balancing,
neighbor list optimization, etc. In this thesis, a case study is given, where transmit
power management is discussed.

A unique point of this dissertation is its matching to the industrial standards made by
the 3rd generation partnership project (3GPP). As a standardization body, 3GPP is
a collaboration of several telecommunication associations. At the end of last century,
Nortel Networks and AT&T Wireless established 3GPP as a strategic initiative to de-
fine the 3G standard. Later, this initiative was turned into a larger alliance with many
major vendors and operators. Now 3GPP already has six organizational partnerships
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across the continents of America, Europe and Asia. Their work is extending from
3G universal mobile telecommunications system (UMTS) to 4G LTE and long-term
evolution advanced (LTE-A) and possibly future 5G standards.

3GPP standards are structured as releases. Each release consists of hundreds of indi-
vidual standard documents and each document may have many revised versions. LTE
is firstly specified in Release 8, which by the time of finishing this thesis has already
been frozen, such that no further changes will be applied to this release.

By following the 3GPP technical specifications, many realistic constraints in imple-
menting wireless communication systems are considered in this work. Moreover, re-
alistic constraints prevent from getting close to the theoretical optimum. Thus, this
dissertation puts more focus on low complexity heuristics, which are relatively easy to
implement in real systems.

Due to the author’s expertise, this thesis mainly targets at the physical layer related
aspects of cellular networks, except for a small part in Chapter 4. The remainder of
this dissertation is organized as follows:

In Chapter 2, preparatory information about wireless communications on both link
level and network level is given. Basics about some of the key technologies of LTE are
explained in this chapter.

For investigating a mobile cellular system, proper modeling of the wireless channel be-
tween base stations (BSs) and mobile stations (MSs) is usually the first step. There-
fore, the methodology of channel modeling is addressed in Chapter 3, particularly
considering multi-antenna transmission. In LTE, to achieve high capacity, up to 4× 4
multi-input multi-output (MIMO) systems are supported [8]. And later in LTE-A, it is
increased to 8×8 [7]. In this work, different existing MIMO channel models, including
analytical models and stochastic models, are explained in detail.

Chapter 4 tackles the problem of imperfect feedback of CSI. The feedback mecha-
nism following the 3GPP LTE standards is first introduced, where the CSI must be
compressed to quantized data with a few levels only. Statistical properties of the time
varying wireless channel in a multi-cell network are then carefully examined. Using the
statistics, novel temporal variation compensation schemes are derived and compared
with the conventional ones by numerical simulations. Moreover, the hybrid automatic
repeat request (HARQ), which operates in the physical layer but is controlled by the
media access control (MAC) layer, is explained in this chapter. HARQ is a retrans-
mission mechanism to offer better error protection. This study also shows the effects
of HARQ on feedback strategies.

The main goal of cellular network control is to optimize the network performance in
terms of key performance indicators (KPIs). The most popular KPIs are capacity
and coverage, where capacity indicates the overall throughput in the network and
coverage shows the quality of service (QoS) of the users with poor signal reception. In
Chapter 5, a case study on heuristic network control strategies is given. In this case
study, transmit power management in a heterogeneous network with overlayed macro-
and femtocells is investigated. The optimization procedure is based on the user report,
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namely, the feedback information discussed in Chapter 4. System level simulators are
built to serve the purpose of testing and evaluating the algorithms.

Finally, in Chapter 6, conclusions are given. And last but not least, the evolution of
wireless communication does not stop at the 4th generation. Many efforts are made to
improve the technology of wireless communications, which is shaping the society and
people’s daily life in a unprecedented manner. Therefore, some outlooks on potential
advances of wireless technology are presented in this chapter.

Parts of this thesis and related topics have already been published in [19] [29] [43] [64]
[93] [94] [95] [96] [97] [98] [99] [100] [101] [102]. A number of further publications based
on this work is in preparation.
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2 Preliminaries

In this chapter, some important facts of wireless networks are introduced. Firstly,
the basic mathematical representation of a wireless communication link is described
in Section 2.1. Secondly, the transmission technology of orthogonal frequency division
multiplexing (OFDM) is presented in Section 2.2. Furthermore, multiple antenna
techniques are explained in Section 2.3. Finally, the wireless cellular network is briefly
discussed in Section 2.4.

2.1 Wireless communication links

A simple communication link consists of three parts, namely, transmitter, receiver
and communication channel in between. The most fundamental question in wireless
communications is how to recover the transmitted signals at the receiver side, or in
another word, to remove the distortion caused by the communication channel.

In wireless communication systems, while the transmitter and receiver can be designed
and controlled, the wireless channel can not be manipulated. Thus, in scientific works,
accurate channel models are desired, in order to recreate a close-to-reality environment
for testing ideas and developing new concepts.

In a single antenna system, the baseband received signal after multi-path propagation
can be written as:

y(t) =

τmax∫
0

h(t, τ)x(t− τ)dτ + w(t), (2.1)

where x(t) ∈ C is the transmitted (Tx) symbol, y(t) ∈ C is the received (Rx) symbol,
w(t) ∈ C is the additive white Gaussian noise (AWGN) term, h ∈ C is the channel
impulse response (CIR), τmax is the maximum delay spread, t denotes time and τ is
delay. Due to the movement of the mobile stations and multi-path propagation, the
CIR has a two dimensional structure, as depicted in Fig. 2.1, where time t and delay
τ are normalized by symbol duration T and sampling interval Ts, respectively.

In wide-band communication systems, a wireless channel can be modeled by a tapped
delay line with irregularly spaced tap delays. Each channel tap is the superposition of
a large number of scattered plane waves that arrive with approximately the same delay.
The wide-band channel has a time-variant impulse response, which can be written as

h(t, τ) =
L∑
l=1

ξl(t)δ(τ − τl), (2.2)



2 Preliminaries

0 1 2 3 4 5 0

5

10

0

0.1

0.2

0.3

0.4

0.5

t/T

τ/T
s

|h
|

Figure 2.1: Two dimensional structure of channel impulse response.

where ξ is the time-varying complex amplitude, L is the total number of taps, l is the
index tap and τl is the delay of the lth tap.

An important class of channels is widely used, where taps with different propagation
delays are uncorrelated and the complex amplitude is a wide-sense stationary process.
This class of channels is referred to as wide-sense stationary uncorrelated-scattering
(WSSUS) channels. In WSSUS channels, ξl(t)’s are wide-sense stationary (WSS) com-
plex Gaussian processes and independent for different taps with average power σ2

l . The
average power of each tap σ2

l is usually described by the power-delay profile (PDP) as
shown in Fig. 2.2. Furthermore, ξl(t) is generally assumed to have the same correlation
function rt(∆t). Hence

Rξlξl(∆t) , E{ξl(t)ξ∗l (t+ ∆t)} = σ2
l rt(∆t), (2.3)

where Rξlξl is the auto-correlation function (ACF) of ξl, (·)∗ is the complex conjugate.

A special case of WSSUS model is often considered, where there is no line of sight
(LoS) between the transmitter and receiver. The signal envelope follows a Rayleigh
distribution, thus, this model is referred as Rayleigh fading. Using Clarkes’ isotropic
scattering model [21], the temporal correlation function can be obtained as

rt(∆t) = J0(2πfD∆t), (2.4)
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Figure 2.2: Power-delay profile for (a) typical urban, (b) bad urban, (c) rural area, (d)
hilly terrain, from COST 207 [30]. The figures show the average power for
each tap, normalized by the total power.

where J0(x) =
∞∑
m=0

(−1)m

m!Γ(m+1)

(
x
2

)2m
is the zero order Bessel function of the first kind,

fD is the maximum Doppler frequency. fD is associated with the carrier frequency fc

and moving speed of the MS v by

fD =
v

c
fc, (2.5)

where c is the speed of light.

2.2 Orthogonal frequency division multiplexing

In wide-band wireless communications, due to multipath propagation, the channel
frequency response (CFR) is generally not flat. The frequency fluctuation causes
erroneous Rx signal, which can be compensated with OFDM [53]. In OFDM, the
transmission frequency band is divided into K equally spaced subbands, such that in
each subband the frequency response is nearly flat.

9
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Figure 2.3: Two dimensional structure of CFR corresponds to CIR in Figure 2.1

In practice, the Tx signal x is obtained by the inverse discrete Fourier transform
(IDFT). The frequency domain discrete Tx signal can be written as

X[n, k] =
K−1∑
m=0

x(nT +mTs) exp {−2πkm∆fTs}

=
K−1∑
m=0

x(nT +mTs) exp

{
−2πkm

K

}
, (2.6)

where n is discrete the time index and k is the subcarrier index. And the sampling
interval Ts is defined as T/K. X[n, k] can be recovered at the Rx side by the discrete
Fourier transform (DFT). If K is a power of two, DFT and IDFT can be efficiently im-
plemented using the fast Fourier transform (FFT). To avoid inter-carrier interference,
the subcarrier spacing has to satisfy the orthogonality condition

∆f ,
1

T
. (2.7)

Suppose the delay taps are on the sampling grid with sampling rate Ts

τl = lTs, (2.8)

10
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the CFR of the kth subcarrier can be written as

H(t, k) =
L∑
l=1

ξl(t) exp

{
−2πkτl

T

}
(2.9)

=
L∑
l=1

ξl(t) exp

{
−2π kl

K

}
, (2.10)

and the corresponding discrete CFR of the nth OFDM block can be written as

H[n, k] =
L∑
l=1

ξl(nT ) exp

{
−2π kl

K

}
. (2.11)

The corresponding CFR of the CIR from Figure 2.1 with 64 subcarriers is shown in
Figure 2.3, where it can be seen that the fluctuation within one subcarrier is much
smaller than within the whole frequency band. This property leads to simplification
of equalization. And it also enables radio resource allocation.

Consider time indices t1, t2 and subcarrier k1, k2, the correlation function of the CFR
for different times and frequencies is

E {H(t1, k1)H∗(t2, k2)}

= E

{
L∑
l=1

L∑
m=1

ξl(t1)ξ∗m(t2) exp

{
−2πk1l

K

}
exp

{
2π

k2m

K

}}

= rt(t2 − t1)
L∑
l=1

σ2
l exp

{
−2π (k2 − k1)l

K

}
= rt(∆t)rf [∆k], (2.12)

where ∆t = t2 − t1, ∆k = k2 − k1 and rf [∆k] is the discrete frequency correlation
function, defined as

rf [∆k] ,
L∑
l=1

σ2
l exp

{
−2π∆kl

K

}
. (2.13)

From (2.12), it is clear that the correlation in time and frequency domain can be
decoupled, and the frequency correlation depends on the PDP.

Moreover, OFDM can be extended to multiple users, with each user using a subset
of the subbands. This multiple access scheme is called orthogonal frequency divi-
sion multiple access (OFDMA). Due to their unique advantages, OFDM and OFDMA
are adopted for many industrial standards, such as LTE, wireless local area network
(WLAN) and digital video broadcasting - terrestrial (DVB-T). Thus, in the foreseeable
future, OFDM and OFDMA will be the dominant technology in wireless communica-
tions.

11
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Figure 2.4: MIMO channel

2.3 Multi-antenna transmission

Another trend in wireless communications is MIMO transmission. Using multiple
Tx and Rx antennas, the energy efficiency and spectral efficiency can be improved
significantly [31] [83]. Consider a MIMO channel with NTx Tx antennas and NRx Rx
antennas, as shown in Figure 2.4, the wireless channel can be expressed in matrix form

Ht(t, τ) =


h1,1(t, τ) h1,2(t, τ) · · · h1,NTx

(t, τ)
h2,1(t, τ) h2,2(t, τ) · · · h2,NTx

(t, τ)
...

...
. . .

...
hNRx,1(t, τ) hNRx,2(t, τ) · · · hNRx,NTx

(t, τ)

 , (2.14)

where hnRx,nTx
represents the channel between the nRxth Rx antenna and nTxth Tx

antenna. Similar to (2.1), the received symbols can be described in the vector form:

yt(t) =

τmax∫
0

Ht(t, τ)xt(t− τ)dτ + wt(t), (2.15)

with

yt(t) =


y1(t)
y2(t)

...
yNRx

(t)

 ,xt(t) =


x1(t)
x2(t)

...
xNTx

(t)

 ,wt(t) =


W1(t)
W2(t)

...
WNRx

(t)

 (2.16)

being the Rx symbol vector, Tx symbol vector and AWGN vector, respectively.

Although the energy and spectral efficiency can be improved by using multiple anten-
nas, for wide-band MIMO transmission with larger numbers of antennas, the equal-
ization problem can become increasingly difficult. Therefore, OFDM and MIMO tech-
niques are often combined into MIMO-OFDM systems, in which the CFR is quasi-
constant for each subband, and equalization can be done in the frequency domain [93].

12
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Using (2.6) and (2.11), the received signal vector in frequency domain can be written
as

yf [n, k] = Hf [n, k]xf [n, k] + wf [n, k], (2.17)

where yf , xf wf are vectors collecting the frequency domain Rx, Tx signals and AWGN,
respectively. Elements of CFR matrix Hf are the IDFT of Ht as defined in (2.11).

In addition to the two dimensional structure described in Figure 2.3, MIMO-OFDM
channels have the third dimension of space. The spatial correlation can degrade the
channel capacity [47], thus, should be properly described. Models for spatial correlation
are elaborated in Chapter 3.

2.4 Cellular networks

Cellular networks are one of the most widely deployed wireless communication net-
works. Figure 2.5 shows the common layout of a cellular network. Typically, a cellular
network consists a number of BSs and a big amount of MSs. The behavior of the
network depends on many facts, such as the distribution, movement and service types
of the MSs, the antenna tilts, Tx power of the BSs, etc. Theoretical analysis of such
complex system is usually very difficult, thus, computer simulation is quite commonly
used. Moreover, due to the large amount of entities in the network, simulation of the
network level cannot cover all the phenomena in the communication links. A higher
level of abstraction is desirable.

In link level modeling, the wireless channel is characterized by the relative location
and velocity of the user, number and orientations of the antennas, frequency and
bandwidth of the signal, as well as the propagation environment. In network level
modeling, all the factors that affect the channel condition are translated into a measure
of CSI. Furthermore, in a multi-cell network, the CSI takes also the interferences from
neighboring cells into consideration. Signal to interference plus noise ratio (SINR) is
a common measure of the CSI. For an OFDM system, the SINR of user i served by
base station s at time t and subcarrier k can be written as

γi,s(t, k) =
Pi,s(t, k)∑

j∈S\s
Pi,j(t, k) + σ2

w

, (2.18)

where P is the Rx power and σ2
w is the noise power, S is the set of all the cells within

the network.

Theoretically, the CSI should be given as input to the cellular network control entities.
However, in practice, this information is typically unavailable at the BS and must be
provided by the MS periodically through a feedback channel. From the aforementioned
wireless communication links, a dilemma arises. On one hand, due to the doubly
selectivity of the channel, optimizing the cellular network requires as much and as
detailed information as possible. And on the other hand, a large amount of feedback
information leads to a large packet overhead, which deteriorates the spectral efficiency.

13
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Figure 2.5: Rx signal level of a network with 7 base stations and 21 cells in hexagonal
layout, where the basestations are located on the joints of the hexagonal
cells

In the current LTE standards, the CSI is compressed for different subcarrier before
the feedback process. The influence of CSI feedback is elaborated in Chapter 4. With
the CSI available at the BS, the cellular network can be optimized through network
control strategies, such as radio resource allocation, handover optimization, antenna
tilt and Tx power management, etc.

2.5 3GPP LTE

An important part of this thesis are physical layer downlink control strategies based
on the user reported CSI, especially with application to LTE systems.

To comply with the standards, some LTE terminologies are used in this thesis, e.g.
the base stations is called evolved node B (eNB) and the mobile station is called user
equipment (UE).

2.5.1 System architecture

Comparing with older generations, LTE does not only offer a new radio interface but
also a new system architecture. 3GPP specifies the system architecture evolution
(SAE) in Release 8. As an all-IP system, there is no more circuit switching center

14
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Figure 2.6: LTE system architecture

in LTE. To reduce latency, the architecture of LTE is flatter than of older systems.
Especially for the user plane (UP), data can be directly passed from BSs to gateways
without going through a control entity [39].

The network architecture of LTE is illustrated in Figure 2.6, where the UE is connected
to some eNB via evolved universal terrestrial radio access (E-UTRAN). In the user
plane, data is sent to some serving gateway (S-GW), which is the mobile anchor point.
The S-GW is in charge of inter-eNB handover, downlink packet buffering, initiation
of network-triggered service requests, etc. The S-GW is connected to a PDN gateway
(P-GW), where the IP address of UE is allocated. Through the P-GW, the data finally
reaches the core network.

In the control plane, the mobility management entity (MME) is the main control
unit. Main functions of the MME include authentication and mobility management.
Basically, MME is a server identifies the UE, request proper resources in the eNB for
the UE and decides which S-GW the UE is connected to. To engage authentication
and mobility management functions, the MME has to request subscription data from
the home subscription server (HSS), which is a repository for all permanent user data.

2.5.2 Physical layer transmission

In the LTE downlink, user data is transmitted via the physical downlink shared channel
(PDSCH) and control information is transmitted via the physical downlink control
channel (PDCCH). The following procedure is applied to the downlink user data [11]:

Transport Block Cyclic redundancy check (CRC) Attachment: A 24-bit CRC mes-
sage of the whole transport block is calculated and attached, where CRC is for error
detection at the Rx side.

Code Block Segmentation and Code Block CRC Attachment: The transport block
attached with CRC bits is chopped up in to smaller blocks and each block is attached
with another 24-bit CRC. To fit into the turbo interleaver, the minimum and maximum
block size is 40 bits and 6144 bits including the CRC bits, respectively. Moreover, filler
bits are appended to the start of the first segment to match the turbo interleaver.

Turbo Encoding: Turbo coding is applied to each segment to enhance error performance
[17]. The turbo encoder is a parallel concatenated convolutional code (PCCC) with
two recursive convolutional encoders and a quadratic permutation polynomial (QPP)
interleaver [65].
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Figure 2.7: LTE downlink signal generation

Rate Matching: The encoded streams are further processed by a rate matching algo-
rithm. Together with the turbo encoder, the rate matching algorithm is capable of
producing any arbitrary rate to match for the transmission resources [20].

Code Block Concatenation: The output blocks of rate matching are sequentially con-
catenated to create the final output of channel coding.

Scrambling: The codewords are bit-wise multiplied by an orthogonal sequence and
a user-specific pseudo-random scrambling sequence. The purpose of scrambling is to
suppress inter-cell interference (ICI). Since the scrambling sequence is pseudo-random
and user-specific, signals from interfering cells can not be descramble correctly. The
result is an uncorrelated, noise-like sequence.

Modulation Mapping: The scrambled codewords are modulated to complex valued
symbols with quadrature phase shift keying (QPSK), 16-quadrature amplitude modu-
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lation (QAM) or 64-QAM. The modulation scheme is chosen to adapt to the channel
condition.

Layer Mapping and Precoding: Since MIMO transmission is adopted in LTE, the com-
plex symbols are mapped onto 1, 2 or 4 spatial layers and multiplied with the precoding
matrix, depending on the number of Tx antennas. For single antenna transmission,
layer mapping and precoding is a dummy process with the output equal to the input.
For multiple Tx antennas, the mapping and precoding scheme depends on the number
of antennas as well as the MIMO transmission mode, which can be either transmit
diversity or spatial multiplexing.

Resource Element Mapping: A Resource Element (RE) is the smallest defined unit
which consists of one OFDM sub-carrier during one OFDM symbol interval. For each
antenna port, the resource elements which are not occupied by other control channels
can be used for PDSCH. The symbols are mapped sequentially to the available resource
elements from the first to the last subcarrier in the first OFDM symbol, and this process
goes on in the remaining OFDM symbols until there is no symbol left.

OFDM Signal Generation: With the resource elements filled with data symbols,
OFDM signal can be generated with inverse fast Fourier transform (IFFT).

The whole procedure is summarized in Figure 2.7 and more details can be found in
[6].
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This chapter introduces link level modeling, especially for MIMO transmission. As the
fundamental part of characterizing wireless communication systems, channel models
can be categorized into analytical models and geometry-based models. Analytical
models emphasize correlation properties, whereas the geometry-based models try to
describe the influence of the spatial environment on the radio wave.

Furthermore, geometry-based models can be divided into deterministic models and
stochastic models. Moreover, a semi-stochastic model, which is a hybrid of the deter-
ministic and stochastic model, is also presented in this chapter.

Parts of this chapter have been published in [97],[93], [101], [98], [102] and [19].

3.1 Analytical models

Analytical MIMO channel models specify channel matrices which have correct cor-
relation properties, generated from basic random number generators. Since the cor-
relation functions of the CFR can be decoupled, the procedure of generating channel
matrices for MIMO-OFDM systems can be divided into three steps [90]. The first step
is to generate independent Rayleigh processes with temporal correlation. The second
step is to apply power delay profile (PDP). And the last step is to create a channel
matrix with spatial correlation.

3.1.1 Rayleigh fading process

In the ideal case, the CIRs for different Tx-Rx antenna pairs of a MIMO system are
independent and identically distributed (i.i.d.). Each channel between antenna pairs
can be regarded as a single-input single-output (SISO) channel. This model is also
referred to as the i.i.d. model. The generation of i.i.d. channels is rather straight
forward. A Rayleigh flat fading CIR with unit variance ζl is generated for each of the
L taps, and then scaled with the variance σ2

l specified in the PDP.

Many different techniques have been proposed to model and simulate mobile radio
channels with Rayleigh fading. The most representative models from early years are
from Clarke and Gans based on sum of sinusoids [21] [33]. In Clarke’s reference model,
the electro-magnetic field of the received signal is assumed to be comprised of a number
of sinusoidal plane waves with equal average amplitude and different Doppler frequency
shifts. The angle of arrivals (AoAs) and phases of these waves are arbitrary [70].
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Accordingly, the normalized complex envelope of an arbitrary propagation path l can
be written as

ζl(t) =
1√
Nsin

Nsin∑
nsin=1

exp {(2πfDt cosψl,nsin
+ Φl,nsin

)} , (3.1)

where Nsin is the number of sinusoids, nsin is the index of sinusoidal wave, ψ is the ran-
dom AoA and Φ is the random initial phase. Both ψ and Φ are uniformly distributed
over [−π, π) for all nsin, and they are mutually independent. From the Euler’s formula,
(3.1) can be expressed with the in-phase and quadrature components

ζl(t) = ζI,l(t) + ζQ,l(t), (3.2)

where the in-phase and quadrature components are given by

ζI,l(t) =
1√
Nsin

Nsin∑
nsin=1

cos (2πfDt cosψl,nsin
+ Φl,nsin

) (3.3)

ζQ,l(t) =
1√
Nsin

Nsin∑
nsin=1

sin (2πfDt cosψl,nsin
+ Φl,nsin

). (3.4)

For large Nsin, the central limit theorem justifies that ζI,l(t) and ζQ,l(t) can be treated
as Gaussian random processes. When Nsin approaches infinity, the autocorrelation of
ζl is [81]

Rζlζl(∆t) = E{ζl(t1)ζ∗l (t2)}
= E{(ζI,l(t1) + ζQ,l(t1))(ζI,l(t2)− ζQ,l(t2))}
= RζIζI(∆t) +RζQζQ(∆t) + (RζQζI(∆t)−RζIζQ(∆t)), (3.5)

where

RζIζI(∆t) = RζQζQ(∆t) =
1

2
J0(2πfD∆t) (3.6)

RζQζI(∆t) = RζIζQ(∆t) = 0. (3.7)
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The first part of (3.6) can be proved as follows:

RζIζI(∆t) = E{ζI(t1)ζI(t2)}

=
1

Nsin

Nsin∑
nsin=1

Nsin∑
msin=1

Eψ,Φ{cos (2πfDt1 cosψl,nsin
+ Φl,nsin

)

· cos (2πfDt2 cosψl,msin
+ Φl,msin

)}

=
1

2Nsin

Nsin∑
nsin=1

{Eψ{cos(2πfD(t1 − t2) cosψl,nsin
)}

+Eψ{cos(2πfD(t1 + t2) cosψl,nsin
)}EΦ{cos 2Φl,nsin

}
+Eψ{sin(2πfD(t1 + t2) cosψl,nsin

)}EΦ{sin 2Φl,nsin
}}

=
1

2Nsin

Nsin∑
nsin=1

Eψ{cos(2πfD∆t cosψl,nsin
)}

=
1

2Nsin

Nsin∑
nsin=1

∫ π

−π
cos(2πfD∆t cosψl,nsin

)
dψl,nsin

2π

=
1

2Nsin

Nsin∑
nsin=1

J0(2πfD∆t)

=
1

2
J0(2πfD∆t). (3.8)

Similarly, the second part of (3.6) and (3.7) can be proved.

Based on Clarke’s reference model, Jakes proposed a simplified simulation model,
which has been widely used for decades [45]. In the Jakes’ model, the AoA and initial
phase are set to

ψJakes,l,nsin
=

2πnsin

Nsin

, (3.9)

ΦJakes,l,nsin
= 0, (3.10)

and Nsin is taken from
Nsin = 4Msin + 2. (3.11)

where Msin is an integer. The value of Msin determines the number of summed sinu-
soids, and thus the statistical property of the model.

Jake’s model reduces the number of distinct Doppler frequency shifts from Nsin to
Msin + 1. However, the deterministic nature of the Jakes’ simulation model makes
it difficult to create multiple uncorrelated fading waveforms for frequency selective
channels.

A randomized simulator, which can solve this problem, is proposed by Pop and
Beaulieu [69]. Pop and Beaulieu’s simulation model also solves the stationarity prob-
lem of Jakes’ model, but higher-order statistics of this model do not match the desired
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ones [104]. This deficiency can be overcome by introducing randomness in path gain,
initial phase and Doppler frequency for all individual sinusoids. In [91]. Xiao et al.
introduced a simulation model following the principles of Clarke’s reference model

ζXiao,l(t) = ζXiao,I,l(t) + ζXiao,Q,l(t) (3.12)

ζXiao,I,l(t) =
1√
Nsin

Nsin∑
nsin=1

cos (2πfDt cosψXiao,l,nsin
+ ΦXiao,l,nsin

) (3.13)

ζXiao,Q,l(t) =
1√
Nsin

Nsin∑
nsin=1

sin (2πfDt cosψXiao,l,nsin
+ ΦXiao,l,nsin

), (3.14)

with the AoA generated by

ψXiao,l,nsin
=

2πnsin + θl,nsin

Nsin

, (3.15)

where θl,nsin
and ΦXiao,l,nsin

are statistically independent and uniformly distributed over
[−π, π) for all l and nsin.

For systems with L delay taps, NTx Tx antennas and NRx Rx antennas, in total
LNTxNRx Rayleigh processes must be independently generated, with the underlying
assumption that the normalized temporal correlation function is identical for all re-
solvable physical multipaths.

Other than sum of sinusoids, IDFT and autoregressive (AR) models are also proposed
to create Rayleigh processes [103] [13]. IDFT and AR models have the advantage in
computational complexity, however, both of them have limitations on applications.
The IDFT method can only work with a relatively large Doppler frequency and FFT
size. Whereas AR models have severe numerical problems when the Doppler frequency
is small.

Assuming the PDP is identical for all Tx and Rx indices [59], σ2
l can be applied to

each delay tap l

hi.i.d.(t, τ) =
L∑
l=1

σlζl(t)δ(τ − τl), (3.16)

where the relation between σl and τl is generally given in tables from the PDP. For
various wireless networks, specific PDP can be found in many standards [30] [40] [3].
The channel matrix Hiid(t, τ) ∈ CNRx×NTx simply collects the CIRs, and arrange them
in an appropriate order.

3.1.2 Kronecker model

The i.i.d. model is mostly favored by theoreticians, due to its mathematical tractabil-
ity. However, spatial correlation of MIMO channels should not be ignored in the
general case, since it has a large impact on the channel capacity [79].
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v

Figure 3.1: Multi-path propagation and movements of mobile station cause frequency
selective time varying fading.

Assuming the spatial correlations are identical for all resolvable physical multipaths,
and static over time, the time and delay indices can be dropped. For arbitrary time
and delay, the spatial correlation matrix RH ∈ CNRxNTx×NRxNTx is defined by

RH , E{vec(Ht)vec(Ht)
H}, (3.17)

where vec(Ht) = [h1,1, h2,1, · · · , hNRx,1, h1,2, · · · , hNRx,2, · · · , hNRx,NTx]
T and Ht is de-

fined in (2.14). The operators (·)T and (·)H are the matrix transpose and Hermitian
transpose, respectively. The correlation matrix is symmetric and real valued on its
diagonal.

If the correlation matrix is known, a spatially correlated channel matrix Hcorr can be
generated from the i.i.d. channel matrix in a rather straight forward way.

Hcorr = unvec(R
1/2
H vec(Hiid)) (3.18)

where R
1/2
H is the square root of RH, unvec(·) is the inverse operation of vec. R

1/2
H has

to be computed by solving the equation

R
1/2
H (R

1/2
H )H = RH. (3.19)

In general RH is positive definite, thus, R
1/2
H can be computed by its Cholesky decom-

position [78].

One of the drawbacks of the full correlation matrix is its big size. It needs (NRxNTx)2

parameters to be fully specified. Furthermore, a direct interpretation of RH with
respect to the physical propagation of radio channel is difficult.

A simplification of the full correlation matrix approach is proposed in [50], where all
antenna elements in both antenna arrays are assumed to have the same polarization
and radiation pattern. In addition, all elements on the transmitter and receiver side
obtain the same power azimuth spectrum (PAS) from each element on the opposite
side. The full channel spatial correlation matrix RH can be written as

RH =
1

tr{RRx}
RRx ⊗RT

Tx, (3.20)
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where ⊗ denotes the Kronecker product and tr(·) is the matrix trace. The one side
Tx and Rx correlation matrices are defined as

RRx = E{HtH
H
t } (3.21)

RTx = E{HH
t Ht}, (3.22)

respectively. And the spatially correlated channel matrix can be generated using

Hkron =
1√

tr{RRx}
R

1/2
Rx Hiid(R

1/2
Tx )T, (3.23)

where R
1/2
Rx and R

1/2
Tx can be calculated using Denman-Beavers square root iteration

[79]. The number of parameters required to fully characterize the MIMO channel by
the Kronecker model is N2

Tx + N2
Rx, which is significantly smaller than by the full

correlation model.

Generally, the modeling parameters RRx and RTx should be estimated using measure-
ment data. Moreover, a further simplification of the Kronecker model is proposed in
[86], where only one coefficient is required to represent the Tx or Rx correlation ma-
trix. The single coefficient Kronecker model is idealistic, however very easy to apply,
thus, quite often used in scientific researches.

3.1.3 Weichselberger model

By assuming the separability of both link ends, the Kronecker model decomposes the
full correlation matrix into Tx and Rx correlation matrices, and thus offers simplicity
for theoretical analysis. However, the ignored joint correlation properties at the trans-
mitter and receiver lead to an underestimation of channel capacity with Kronecker
model [68].

Consider the case that both link ends are not independent, the one-sided correlation
matrices have to be parameterized by the statistical properties of the other link end

RRx,QTx
= E{HtQTxH

H
t } (3.24)

RTx,QRx
= E{HH

t QRxHt} (3.25)

where QTx and QRx are the spatial signal covariance matrices of the Tx and Rx sides,
respectively [87]. The Kronecker model is a special case where QTx and QRx are
identity matrices.

It is easy to prove that both RRx,QTx
andRTx,QRx

are normal matrices. They can be
factorized using the eigenvalue decomposition as

RRx,QTx
= URxΛRx,QTx

UH
Rx (3.26)

RTx,QRx
= UTxΛTx,QRx

UH
Tx, (3.27)

where Λ are real-valued diagonal matrices with nonnegative entries. The eigenbases
URx and UTx do not have dependencies on the correlation of the other link end.
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Tx

(b)

Tx

Rx

(a)

Figure 3.2: Deterministic channel models: (a) Ray-tracing; (b)Ray-launching.

The channel matrix of Weichselberger model can be written as

Hweich = URx

(
Ω̃�Hiid

)
UT

Tx, (3.28)

where Ω̃ is the element-wise square root of the power coupling matrix Ω, � is the
element-wise matrix product.

The modeling parameters RRx,QTx
, RTx,QRx

and Ω must be extracted from measure-
ment data, in order to recreate a certain channel condition. Detailed information is
given in [87]. By considering the joint correlation on both link ends, the average mu-
tual information of the channels generated by the Weichselberger model matches the
measurements quite well, while the Kronecker model tends to underestimate the chan-
nel capacity [67]. However, since the model parameters can only be estimated from
measurement data, the Weichselberger model is not applicable for a given environment
without a measurement campaign.

3.2 Deterministic models

Unlike the analytical models, the starting point of geometry-based models is the phys-
ical wave propagation. According to the modeling methodology, geometry-based mod-
els can be categorized into deterministic models and stochastic models.

Deterministic models, such as ray-tracing and ray launching, characterize the physical
propagation parameters in a completely deterministic manner by following or launch-
ing deflected rays from transmitters to receivers [89] [54]. In deterministic models,
electromagnetic characteristics of radio links are explicitly calculated by means of a
detailed description of the propagation environment. Deterministic models capture the
nature of radio wave propagation, thus are intuitive and potentially accurate. However,
they are site specific, i.e., geometric information about the propagation environment
must be known.

In deterministic models, all possible paths from the Tx to the Rx are determined
by considering propagation phenomena like reflections at walls and diffractions at
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building edges. Usually, the propagation environment is described by polyhedrons.
A visibility tree is build to capture the radio propagation paths. The visibility tree
consists of nodes and branches, representing objects (walls, wedges, Rx, etc.) and LoS
connections between objects, respectively. The layered structure of the visibility tree
represents the depth of interactions.

For ray-tracing, the images of Tx relative to the reflecting planes are computed, as
depicted in Figure 3.2 (a). Each reflected or diffracted ray from the Tx to the Rx is
exactly determined. This calculation leads to a very high accuracy, because all the
relevant objects are always considered for the selection of interactions. However, as the
number of interactions increases, the computational complexity grows exponentially.

With ray-launching, the rays are launched from the transmitter homogeneously with
a discrete angle increment [89]. After each interaction, the reflected or diffracted rays
are computed and traced further as illustrated in Figure 3.2 (b). The tracing can be
terminated, when the power of a ray drops under a predetermined threshold. The
disadvantage is that the constant increment between two rays leads to the problem
that it is hard to determine whether a wedge is hit or not.

Despite the high accuracy, the computational burden makes ray-tracing incapable of
handling large wireless communication scenarios [85]. Thus, it is mostly used for in-
door or microcell environment. The ray-launching method has many advantages in
predicting field strength for a large area [61]. In urban scenarios, a cube oriented
3D ray launching algorithm (CORLA) proposed in [58] offers both fast and accurate
field strength prediction. As an enhancement of CORLA, the ray-launching tool par-
allel implemented ray optical prediction algorithm (PIROPA) benefits from parallel
computing peripherals, and thus provides an even faster solution [74].

However, since CORLA, PIROPA and other ray-tracing/launching algorithms are to-
tally deterministic, they are generally used to predict field strength but not to generate
channel matrices.

3.3 Geometry-based stochastic channel models

During radio wave propagation, a transmitted signal can be reflected or diffracted by
various scatterers. In geometry-based stochastic channel model (GSCM), with geomet-
rical description of the propagation environment (e.g. urban, suburban, etc.), locations
of the scatterers are chosen randomly. After that, statistical information about the ra-
dio wave is generated and superimposed to create channel matrices. Moreover, for the
purpose of creating an easy-to-use solution to conduct simulations, a few standardized
GSCMs have been proposed.

3.3.1 Double directional channel model

To generate the statistical information, the influence of various elements on the radio
channel should be studied separately. Consider the Rx side, the Rx antennas coher-
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Figure 3.3: The relationship among the radio channel, the single directional channel
and the double directional channel.

ently collect the components from all directions, and weight them with the directional
antenna gain

hnRx,nTx
(t, τ) =

∫
ψ

√
GnRx

(ψ)hnRx,nTx
(t, τ, ψ)dψ, (3.29)

where the single directional channel impulse response (CIR) hnRx,nTx
(t, τ, ψ) is param-

eterized by the angle of arrival (AoA). The directional Rx antenna gain GnRx
depends

on the antenna geometry and orientation.

Moreover, the Tx antennas distribute the signal energy into the desired angle of depar-
ture (AoD), the single directional CIR is the integration over all angles of departure
AoDs

hnRx,nTx
(t, τ, ψ) =

∫
φ

√
GnTx

(φ)hnRx,nTx
(t, τ, φ, ψ)dφ, (3.30)

where GnTx
is the Tx antenna gain.

To summarize, the CIR is a function of the double directional CIR:

hnRx,nTx
(t, τ) =

∫
φ

∫
ψ

√
GnTx

(φ)
√
GnRx

(ψ)hnRx,nTx
(t, τ, φ, ψ)dφdψ. (3.31)

The relationship of the CIR, the single directional CIR and the double directional
CIR is shown in Figure 3.3. Clearly, the double directional channel model divides the
radio channel into three parts: Tx antennas, Rx antennas and the double directional
channel in between. In [80], the double directional channel model is validated with
measurement data, laying the foundation of standardized GSCMs.

3.3.2 Multi-path component clusterization

In principle, the double directional channel model is an integral of multi-path com-
ponents (MPCs), which has a distinct set of propagation parameters, such as AoD,
AoA and delay. However, measurements show that these MPCs are often observed in
clusters, where a cluster is a group of MPCs with similar propagation parameters as
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Figure 3.4: Clusterized multi-path MIMO channel model

shown in Figure 3.4 [71]. Ignoring the clustering effects results in overestimation of
the channel capacity [52].

To engage computer-based simulation, the double directional channel model must be
discretized. Therefore, the CIR of a cluster can be represented by the summation of a
discrete number of MPCs.

The MIMO CIR can be written as

hnRx,nTx
(t, τ) =

Nc∑
nc=1

NM∑
nM=1

√
GnTx

(φnc,nM
)
√
GnRx

(ψnc,nM
)

· hnRx,nTx,nc,nM
(t, τnc,nM

, φnc,nM
, ψnc,nM

) (3.32)

where nc and nM are the index of cluster and index of MPC within a cluster, respec-
tively. And Nc and NM are the number of clusters and number of MPCs within a
cluster, respectively.

Due to the similarity of the AoDs, AoAs within a cluster, they can be modeled as the
cluster parameters with a small offset value [26]:

φnc,nM
= φnc + εAoD,nM

(3.33)

ψnc,nM
= ψnc + εAoA,nM

, (3.34)

where εAoD,nM
and εAoD,nM

are the offset values of AoD and AoA, respectively.

3.3.3 Standardized models

In the double directional channel model, the antenna geometry can be designed to
produce desirable antenna patterns. The angularly resolved double directional CIRs
can be generated, if their statistical properties are known. Following this concept,
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standardized simulation models, such as 3GPP spatial channel model (SCM) [4], 3GPP
spatial channel model extension (SCME) [15] and wireless world initiative new radio
(WINNER) model [44], have been developed. Standardized models enable their users
to generate channel matrices without performing measurement campaigns.

To develop standardized models, the standardization entities first have to conduct a
large amount of channel measurements. The measured data are then analyzed and
the statistical parameters are extracted. Supposedly, these models are able to recreate
wireless channels with the same statistical behavior.

To use a standardized model, people have to choose a scenario (Urban, suburban,
rural area, etc.) and set up the network layout as well as antenna parameters. With
these settings given, the model first generates large scale parameters (LSPs), e.g.,
AoD spread, AoA spread and delay spread. Basically, the LSPs specify statistical
properties of the small scale parameters including AoD, AoA, delay, etc. With the
specified statistical properties, small scale parameters can be randomly generated and
the channel coefficients can be calculated accordingly.

The generation of channel coefficients follows a generic model. Taking the scenario
described in Figure 3.4 as an example, where both the Tx and Rx antenna arrays are
uniform linear arrays (ULAs). Assuming that in each cluster, the power is uniformly
distributed for every MPC, the CIR can be written as

hnRx,nTx
(t, τ) =

Nc∑
nc=1

√
Unc,nM

NM∑
nM=1

√
GnTx

(φnc,nM
)
√
GnRx

(ψnc,nM
)

· exp

(


(
2π

λ
kT

Tx,nc,nM
dTx,nTx

)
+ Φnc,nM

)
· exp

(

2π

λ
kT

Rx,nc,nM
dRx,nRx

)
· exp

(

2π

λ
vnc,nM

t

)
δ(τ − τnc,nM

), (3.35)

where Unc,NM
is the MPC power. It is common to assume the cluster power is uniformly

distributed in each MPC:

Unc,nM
=
Unc

NM

. (3.36)

The wavelength of the carrier wave is denoted by λ. Φnc,nM
is a random initial phase

and τnc,nM
is the path delay. The directional vectors are defined as [92]

kTx,nc,nM
=

[
cosφnc,nM

sinφnc,nM

]
, kRx,nc,nM

=

[
cosψnc,nM

sinψnc,nM

]
, (3.37)

where φnc,nM
and ψnc,nM

are generated with a cluster AoD φnc and AoA ψnc plus path
specific offset angles. Furthermore, the AoDs and AoAs are randomly coupled. The
position vectors are defined as

dTx,nTx
=

[
xTx,nTx

yTx,nTx

]
, dRx,nRx

=

[
xRx,nRx

yRx,nRx

]
, (3.38)
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Figure 3.5: Power-delay profiles for a NLoS environment in (a) Semi-stochastic channel
model (b) WINNER model C2 scenario (typical urban macrocell)

where xTx,nTx
, yTx,nTx

, xRx,nRx
, yRx,nRx

are X and Y coordinates of the nTxth Tx antenna
element and nRxth Rx antenna element, respectively. And the Doppler frequency
component is defined as

vnc,nM
= v cos(ψnc,nM

− ϑ) (3.39)

where v and ϑ are speed and angle of the movement of the user, respectively.

There are some further extensions of this generic model including LoS support, polar-
ized antenna, elevation angles, etc.

Among these three standardized models, the WINNER model provides the widest
range of carrier frequency and bandwidth, the largest set of scenarios, and cross-
correlation among LSPs. The WINNER model also allows a discrete time evolution of
simulation parameters. Therefore, the WINNER model can be regarded as the leading
MIMO channel model among existing standardized models [62].

3.4 Semi-stochastic channel model

In the WINNER model, the total number of different scenarios is 17, which is signif-
icantly larger than the 3 scenarios specified in SCM and SCME. However, there are
still limitations for the standardized GSCM. Although some stochastic characteristics
of the wireless channel are preserved, location specific geographical data can not be
utilized to improve modeling accuracy. For example, the terrain of the city Budapest
is flat on the side of Pest and uneven on the side of Buda. However, with GSCM,
one can only choose “Urban” scenario to simulate both areas, and neglect the definite
differences between the propagation environments.

In contrastt, geographical information can be effectively utilized in the deterministic
models. However, the conventional deterministic models only focused on predicting
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field strength, taking neither the frequency selectivity caused by multi-path propa-
gation nor spatial diversity caused by multiple antennas into consideration. In [74],
the ray-launching tool PIROPA provides not only field strength but also multi-path
information, e.g., AoA, AoD and the delay of each path. With the multi-path informa-
tion, a semi-stochastic channel model (SSCM) can be applied to generate the channel
coefficients [101].

3.4.1 Combining deterministic model and stochastic model

The central idea of SSCM is to replace the randomly generated cluster parameters
with explicitly calculated ones. Thus, the advantages of deterministic model and
GSCM can be combined. Figure 3.5 shows two power delay profiles used in SSCM and
WINNER, respectively. Be aware that unlike in WINNER model, in SSCM, the PDP
is calculated with the environment data and thus location based. Therefore, even in a
single scenario setup, two different locations close to each other can have significantly
different PDPs due to radio wave propagation.

The basic assumption of SSCM is the equivalence of propagation paths in PIROPA
and clusters in GSCM. With this assumption, φnc and ψnc can be obtained from the
output of PIROPA, and φnc,nM

and ψnc,nM
can be generated in the same way as in the

standardized GSCMs.

The modeling procedure of SSCM can be summarized into two stages. The first stage
is the deterministic stage, where PIROPA is performed on a certain city map. With the
location of the BS and propagation environment given, PIROPA calculates propagation
paths for every possible location of the MS on the map. The output information
of this stage is totally deterministic. Therefore, for a given map, the deterministic
stage is only needed to be performed once. The result can be saved into a file for the
second stage. The second stage is the stochastic stage, where randomness is generated.
In this stage, antenna patterns are applied according to antenna orientations; MPC
parameters are generated following the same rules as described in the GSCMs and
the Doppler frequency components are calculated for given moving speeds of the MSs.
And finally (3.35) is used to calculate the CIR. In Table 3.1, the parameters generated
in both stages are summarized.

3.4.2 Model validation

To validate the SSCM, MIMO data from a measurement campaign in Ilmenau is used
for comparison.

Ilmenau measurements

The measurement campaign was done in July, 2008, in Ilmenau, a town in Thuringia,
Germany. Ilmenau has a typical landscape of an European small to mid-sized town.
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Deterministic stage Stochastic stage
Nc NM

Unc Unc,nM

φnc φnc,nM

ψnc ψnc,nM

τnc τnc,nM

dTx,nTx
,dRx,nRx

vnc,nM

Φnc,nM

Table 3.1: Parameters for deterministic stage and stochastic stage

The terrain is not totally flat but without steep slopes. Most of the buildings have
similar heights. These facts make Ilmenau an ideal place to test for the urban macro
cell reference scenario.

In the measurement campaign, three transmitters were placed on cranes and lifted
to 25 meters above the ground to simulate BSs. Channel sounding equipments are
carried by a car and traveled along 22 different trajectories, as shown in Figure 3.6.
The campaign setup complies with 3GPP LTE standards. A pair of 40 MHz band at
2.53 GHz were measured [73]. On the BS side, a 8× 1 polarized uniform linear patch
array (PULPA) with beam width of 100◦ azimuth and 24◦ elevation is deployed. On
the MS side, a 12×2 stacked polarimetric uniform circular patch array (SPUCPA) with
omnidirectional azimuth pattern and 80◦ elevation beam width is adopted. The MS
travels with a walking speed. The channel response is collected in frequency domain,
as shown in Figure 3.7. Some of the measurement parameters are summarized in
Table 3.2.

Inter-site distance BS1-BS2 = 680m, BS2-BS3 = 580m,
BS1-BS3 = 640m

Tx power 46 dBm
Center frequency 2.53 GHz

Bandwidth 2× 40 MHz
CIR length 6.4 µs

CIR sampling 641 samples
Snapshot rate >75 Hz

Positioning Odometer and GPS

Table 3.2: Measurement setup of Ilmenau campaign
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Figure 3.6: Overview of Ilmenau measurement campaign

Metric

For a wireless communication channel, the most important metric is the channel ca-
pacity. For simplicity, consider the frequency domain model in (2.17). For a channel
realization Hf , the mutual information is given by

I = log2 det
(
INRx

+ HfQHH
f

)
, (3.40)

where Q is the frequency domain spatial signal covariance matrix, defined as

Q = E
{

(xf − E{xf})(xf − E{xf})H
}
. (3.41)

For fading channel with perfect CSI available at both the Tx and Rx ends, the ergodic
channel capacity can be written as [36]

Cperfect = E

{
max
Q

log2 det
(
INRx

+ ρTxHfQHH
f

)}
, (3.42)
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Figure 3.7: Measured CFR of path 9a-9b from Ilmenau data

where ρTx is the transmit signal to noise ratio (SNR). In this case, the channel capacity
can be achieved if the transmit power is optimized with water filling.

If CSI is not available, the optimal covariance matrix Q is given by [83]

Q =
1

NTx

INTx
(3.43)

and the ergodic capacity becomes

Cno = E

{
log2 det

(
INRx

+
ρTx

NTx

HfH
H
f

)}
. (3.44)

Numerical results

In the numerical evaluation, Cno calculated for the SSCM and WINNER model is com-
pared with the ergodic capacity obtained from measurements. For WINNER model,
the same relative locations of the basestations and mobile stations are used. However,
due to the limitation of GSCM, the location information of the buildings can not be
given as input to improve the performance.

As shown in Figure 3.8, the ergodic capacity calculated by SSCM is very close to
the measurements, whereas the WINNER model gives a more fluctuated result with
much less accuracy. Therefore, the extra geographic information provided to the ray
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Figure 3.8: Ergodic channel capacity for path 9a-9b

launcher indeed improves the modeling accuracy. Moreover, since the ray launcher is
only needed once, the SSCM can actually have a smaller computational complexity
than WINNER model [19] for multiple simulations in the same environment.

3.4.3 Adaptation to OFDM systems

In OFDM systems, the signals are sampled with a sampling interval Ts. However, in the
SSCM, the delay taps are not necessarily aligned with the sampling grids. Therefore,
direct time domain sampling results in false output. This problem can be solved by
using the frequency domain representation.

Consider the wide-band channel described by (2.2) and its frequency domain repre-
sentation in (2.9), the effective time domain response can be written as

h(t,mTs) =
K−1∑
k=0

H(t, k) exp

{
2π

kmTs

T

}
(3.45)

=
K−1∑
k=0

L∑
l=1

ξl(t) exp

{
−2πkτl

T

}
exp

{
2π

km

K

}
(3.46)

=
L∑
l=1

ξl(t)
K−1∑
k=0

exp
{
2πk

(m
K
− τl
T

)}
. (3.47)
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Figure 3.9: Equivalent baseband CIR for an OFDM system with 128 subcarriers

As a geometry sequence, the summation over k can be calculated as

K−1∑
k=0

exp
{
2πk

(m
K
− τl
T

)}
=

1− exp
{
2πK

(
m
K
− τl

T

)}
1− exp

{
2π

(
m
K
− τl

T

)} . (3.48)

From Euler’s formula, it is easy to get

1− exp{a} = −2 exp
{

a

2

}
sin
(a

2

)
. (3.49)

Applying (3.49) to (3.47) yields the equivalent baseband CIR for OFDM systems as

h(t,mTs) =
L∑
l=1

ξl(t) exp
{
π(K − 1)

(m
K
− τl
T

)} sin
(
πK

(
m
K
− τl

T

))
sin
(
π
(
m
K
− τl

T

)) . (3.50)

An example of the CIR produced by SSCM and the equivalent CIR for OFDM systems
is shown in Figure 3.9.

3.4.4 Obtaining geographical information

To use the SSCM, precise geographical data is a prerequisite, however usually unavail-
able. The open source database open street map (OSM) provides free information
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about the accurate building shapes [1]. The coverage of OSM includes the majority of
populated area in Europe. Figure 3.10 (a) shows a part of the city Munich. Since the
purpose of OSM is map usage, there is only little of height information, which has to
be obtained from other sources.

As a feature of most European cities, neighboring buildings generally have similar
heights. Thus, a uniform height can be assigned to the buildings to achieve a good
estimation. Figure 3.10 (b) is constructed from the OSM data with an uniform height
information from estimation. Some previous works show that ray-tracing can still
deliver good results with a 2.5D map with uniform height information [38].
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(a)

(b)

Figure 3.10: (a) Building information of a part of Munich. Building edges are marked
with solid lines. (b) Reconstructed 2.5 D geographical data using uniform
building height
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4 Feedback Strategies for Link level
Information

In cellular systems, to facilitate radio resource management, the downlink channel state
information (CSI) is measured by the MS and it is send back to the BS via uplink
transmission. The feedback operation must be done periodically, since the mobile
radio channel is always changing. Therefore, to improve the uplink data throughput,
the signaling overhead caused by this feedback information should be minimized. In
LTE systems, a 4-bit channel quality indicator (CQI) is specified to carry the CSI [8].

The highly quantized CQI results in several problems. Firstly, in frequency selective
channels, different subcarriers have a different frequency response. However, the LTE
CQI feedback is not specified on subcarrier level, but on subband level. And each
subband consists a number of subcarriers. Hence, the different CSI on different sub-
carriers must be properly mapped into one single CQI. The mapping from CSI to
CQI is discussed in Section 4.1. Secondly, after the CQI is transmitted from the MS,
there is always a delay, before it is used in the BS to determine the resource alloca-
tion. If this period is longer than the channel coherence time, the CQI used at the BS
could be already outdated. As a result, the temporal variation of the channel should
be compensated with channel prediction. The compensation of temporal variation is
addressed in Section 4.3. Moreover, channel prediction schemes behave differently in
systems with HARQ, which is explained in Section 4.4. In addition, the CQI has a
strong relation to the resource allocation algorithm in multi-user systems. This issue
is investigated in 4.5.

Parts of this chapter have been published in [64], [99], [102] and [100].

4.1 Information feedback in cellular networks

In LTE, depending on the periodicity of the CQI reporting modes, the feedback infor-
mation is sent via the physical uplink control channel (PUCCH) or the physical uplink
shared channel (PUSCH). And the down link data is transmitted via the PDSCH,
where the modulation and coding schemes depend on the feedback information [5].

4.1.1 LTE resource structure and CQI basics

The LTE frame structure in physical downlink shared channel (PDSCH) is shown in
Figure 4.1. As the smallest unit in the LTE transmission structure, the resource ele-
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Figure 4.1: Resource structure of LTE

ment (RE) is defined as 1 subcarrier times 1 OFDMA symbol. A slot, which is made up
by 7 OFDMA symbols with normal cyclic prefix or 6 OFDMA symbols with extended
cyclic prefix, has a length of 0.5 ms in time domain. The basic unit for resource alloca-
tion is the physical resource block (PRB), which consists of 12 consecutive subcarriers
in 1 slot [8]. In spatial multiplexing mode, a few spatial layers can be transmitted at
the same time. A frame of a duration of 10 ms consists of 10 subframes, and each
subframe consists of 2 slots.

As a feature of OFDMA, a different modulation and coding scheme (MCS) can be
applied to different PRB. Moreover, the MCS is adaptive to channel conditions, where
the base stations can choose either higher data rate or better error protection, accord-
ing to the channel quality [6]. To facilitate adaptive modulation and coding (AMC),
UEs must measure the channel quality and send the information to base stations. To
reduce the signaling overhead, the channel quality information is compressed into a 4
bit CQI in LTE standards [8].

The CQI works as an index of the MCS. The correspondence between the CQI and the
MCS is shown in Table 4.1. Smaller CQI values correspond to lower modulation orders
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Figure 4.2: SINR to CQI mapping for SISO transmission

CQI index Modulation Code rate × 1024 Efficiency [bit/s/Hz]
0 out of range
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

Table 4.1: The 4-bit CQI table in LTE [8]

and smaller code rates. Therefore, the data is better protected against distortion. And
larger CQI values correspond to higher order modulation and higher code rates, such
that higher data rate can be achieved. Accordingly, the CQI can be defined as

Definition 1. The CQI is the highest index in Table 4.1, whose MCS leads to a block
error rate (BLER) not higher than 0.1 in the current channel condition.

Moreover, to further reduce the usage of uplink bandwidth, the feedback information
is generated on subband level. A subband is defined as a group of consecutive PRBs.
The CSI of all the PRBs within a subband is compressed into only one CQI message.
Therefore, the CSI, namely, the SINR, of each PRB must be properly mapped into a
single value. In fact, the SINR to CQI mapping consists of two steps, as illustrated
in Figure 4.2. The measured SINRs are first compressed into a real valued effective
SNR. The effective SNR is then mapped into an integer CQI.
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Figure 4.3: BLER for CQI 1-15 in AWGN channel

4.1.2 SINR to CQI mapping

To improve network capacity, the frequency reuse factor in LTE is 1. Therefore, strong
co-channel interference (CCI) is to be expected. Consider a downlink system with S
cells, where an arbitrary UE i is served by the cell s. The Tx power is uniformly
distributed among subcarriers and the OFDMA signals are perfectly synchronized.
The frequency domain SINR of user i on subcarrier k is given as

γ(t, k) =

|Hi,s(t,k)|2Gs(t,k)Us(t,k)

Li,s(t,k)∑
j∈S\s

|Hi,j(t,k)|2Gj(t,k)Uj(t,k)

Li,j(t,k)
+ σ2

w

, (4.1)

where U is the Tx power, G is the antenna gain of the BS, L is the pathloss, H is the
normalized CFR for fast fading process, S is the set of cells and σ2

w is the noise power.

Due to frequency selectivity, different PRBs generally have different SINRs. To find
a proper value for the CQI, SINRs on different PRBs must first be mapped into an
effective SNR. The BLER is the most popular criterion for the SINR to effective SNR
mapping.

Since the CQI feedback is done on subband level, all the PRBs in the same subband
would have the same MCS. With perfect channel knowledge, the CQI Q(t, κ) is the
index of MCS for an arbitrary PRB κ in subband b, as given in Table 4.1. The BLER
of the transmission is jointly determined by the MCS and effective SNR of the wireless
channel as Pe(Q(t, κ), γe(t, b)).
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The BLER of transmission with different SINR in a frequency selective fading channel
should match the BLER of transmission with the effective SNR in an AWGN channel.
It can be written as:

Pe(Q(t, κ), γe(t, b)) = Pe(Q(t, κ), γ(t, k), κ ∈ Ki, k ∈ Bi(b)), (4.2)

where Pe is the BLER, γe is the effective SNR, K is the set of PRBs, and Bi(b) is the
set of subcarriers in subband b. The BLER performance using the modulation and
coding scheme specified in Table 4.1 in AWGN channel is shown in Figure 4.3.

One commonly used SINR to effective SNR mapping scheme is the exponential effective
SINR mapping (EESM) [28]. Using EESM, the effective SNR can be written as

γe(t, b) = −β ln

 1

Nb

∑
k∈Bi(b)

exp

{
−γ(t, k)

β

} , (4.3)

where Nb is the number of subcarriers in set Bi(b), the calibration parameter β needs
to be empirically fine-tuned as a function of MCS and packet length. The fine-tuning
can be done by minimizing the SINR compression error with extensive simulations
[63]. Following the 3GPP specification of transmission blocks [6] and implementation
of the Turbo decoder described in [82], the optimal values of β are summarized in
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CQI 0 1 2 3 4 5 6 7
β n/a 4.40 4.07 4.22 3.87 4.57 4.68 5.85

CQI 8 9 10 11 12 13 14 15
β 3.77 3.97 3.71 3.06 3.20 3.04 2.41 1.88

Table 4.2: Optimal value for β in LTE

CQI 0 1 2 3 4 5 6 7
SNR[dB] −∞ -6.59 -4.94 -2.90 -1.04 1.08 2.78 5.02

CQI 8 9 10 11 12 13 14 15
SNR[dB] 6.89 8.70 10.74 12.78 14.64 16.42 18.20 20.19

Table 4.3: Minimum effective SNR for CQI feedback

Table 4.2. An example of SINR to effective SNR mapping using EESM is given in
Figure 4.4.

According to Definition 1, the effective SNR to CQI mapping function can be easily
derived by applying a horizontal line for Pe = 0.1 in Figure 4.3. Each intersection
point indicates the minimal SNR for the corresponding CQI, as shown in Table 4.3.
Consequently, a step mapping function can be obtained, as illustrated in Figure 4.5.

4.1.3 Throughput and CQI feedback

The most important QoS metric in LTE is data throughput. Consider a single user
case. Suppose perfect CSI is available and the MCS is always matched to the channel
condition as described in Table 4.1. The probability of a successful transmission is

P0(Q(t, κ), γe(t, b)) = 1− Pe(Q(t, κ), γe(t, b)). (4.4)

Thus, the bandwidth efficiency of a certain PRB can be written as

E(t, κ) = η (Q(t, κ))P0(Q(t, κ), γe(t, b)), (4.5)

where η is the spectral efficiency as a function of the MCS, which can be found in
Table 4.1. And the average throughput of this user is given by

F (t) =
∑
κ∈K

B · E(t, κ), (4.6)

where B is the bandwidth of a PRB.

The relationship of bandwidth efficiency and effective SNR is shown in Figure 4.6.
Since the MCS is directly associated with CQI, a noisy CQI feedback leads to an
reduced throughput.

The CQI feedback consists of the following components as noise:
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Figure 4.5: Effective SNR to CQI mapping function, extracted from the BLER curves

• Estimation noise: On UE side, due to imperfect SINR estimation, the estimated
SINR is deviated from the true SINR [42].

• Compression noise: The SINR to effective SNR mapping, is a lossy compression.

• Calibration noise: In the SINR to effective SNR mapping, the parameter β is
empirically calibrated. Different implementations of the turbo decoder could
result in a calibration mismatch.

• Quantization noise: The real valued effective SNR is mapped to a 4-bit CQI
index, with a lot of information loss.

In the presence of such noise components, the CSI available at the eNB side is far from
perfect. However, the radio resource management in LTE systems must be performed
using only this imperfect information. The result is that solutions depending on perfect
CSI are either inapplicable or that performance is degraded severely in real systems.

Other than the aforementioned noises, CQI feedback also suffers from temporal vari-
ation caused by delay. Figure 4.7 shows the time sequence for CQI feedback in LTE
systems, where the total feedback delay is composed of the measurement delay on the
UE side, the propagation delay in the wireless channel and the processing delay on the
eNB side. Due to the movement of UE, the mobile channel is always changing. The
CQI used for the resource management can be already outdated. Thus, the temporal
variation of CSI must be compensated.
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4.2 Channel statistics

To compensate temporal variation, statistics of the SINR are first investigated. Due
to the orthogonality of OFDM, every subcarrier can be treated in the same way inde-
pendently. Therefore, an arbitrary subcarrier is chosen to represent the problem and
the subcarrier index k is omitted here, for the reason of simplicity.

Define the power of the signal received by UE i from cell j as

Pi,j(t) ,
|Hi,j(t)|2Gj(t)Uj(t)

Li,j(t)
, for j ∈ S. (4.7)

To derive the second order statistics, the following assumptions are made [100]:

1. Assume the network is overloaded, which means Uj(t) > 0,∀j, t.

2. Assume the Tx power is time invariant and the same for all eNBs. Therefore,
Uj(t) becomes a constant.

3. Assume the orientation of antennas does not change, and thus Gj(t) becomes
constant.

4. Assume ∆t is small enough, so that the relative location of the UE to the eNB
does not change significantly. Accordingly, in the log distance pathloss models,
Li,j(t) can also be regarded as a constant.
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Figure 4.7: Time sequence for CQI feedback in LTE systems

5. Assume the CFR is normalized, i.e., E{|Hi,j(t)|} = 1. The average Rx power
can be defined as

P i,j ,
Uj(t)Gj(t)

Li,j(t)
. (4.8)

6. Assume all the cells are using the same wireless communication standard. That
means all the interfering signals have the same symbol duration and carrier
frequency as the useful signal. Thus, the CFRs for all different eNB-UE pairs
are i.i.d. processes. Consequently, the statistics of Hi,j(t), j ∈ S are independent
of j.

7. Furthermore, |Hi,j(t)|2 is assumed to be a Rayleigh fading process with autocor-
relation function of J0(2πfD∆t)

Applying these assumptions, (4.7) becomes

Pi,j(t) = P i,j |Hi,j(t)|2 , for j ∈ S. (4.9)

Statistical properties of SINR can be derived from this simplified expression.
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4.2.1 Expectation of SINR

The expectation of the SINR is given by

E{γ(t)} = E

 Pi,s(t)∑
j∈S\s

Pi,j(t) + σ2
w

 (4.10)

Since Pi,s and Pi,j are independent, the numerator and denominator in (4.10) are
considered separately as the product:

E{γ(t)} = E {Pi,s(t)}E

 1∑
j∈S\s

Pi,j(t) + σ2
w

 (4.11)

The starting point of the calculation is the following equation:

∞∫
0

za−1e−qzdz =
Γ(a)

qa
, (4.12)

where the Gamma function is defined as

Γ(a) =

∞∫
0

xa−1e−xdx. (4.13)

Equation (4.12) can be proved by defining a variable

x = qz, (4.14)

and thus the differential becomes:

dx = qdz. (4.15)

After substituting z with x, (4.12) becomes

∞∫
0

za−1e−qzdz =
1

q

∞∫
0

(
x

q

)a−1

e−xdx (4.16)

=
1

qa

∞∫
0

xa−1e−xdx (4.17)

=
Γ(a)

qa
, (4.18)
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and thus

1

qa
=

1

Γ(a)

∞∫
0

za−1e−qzdz. (4.19)

Since

Γ(1) = 0! = 1, (4.20)

taking the special case of (4.19) with a = 1, the following equation can be obtained:

1

q
=

∞∫
0

e−qzdz. (4.21)

And (4.11) can be written as

E{γ(t)} = E {Pi,s(t)}E


∞∫

0

exp

−z
∑
j∈S\s

Pi,j(t) + σ2
w

 dz

 , (4.22)

where parameter z holds no physical meaning. Further assume that the Rx power
from different cells are mutually independent, (4.11) becomes

E{γ(t)} = E {Pi,s(t)}
∞∫

0

exp
{
−zσ2

w

} ∏
j∈S\s

E {exp {−zPi,j(t)}} dz. (4.23)

The first expectation term in (4.23) can be calculated according to (4.9). Since P i,s

and Hi,s(t) are independent, and H(t) is normalized to

E
{
|H(t)|2

}
= 1, (4.24)

it is easy to obtain
E {Pi,s(t)} = P i,s. (4.25)

The calculation of the second expectation term in (4.23) is based on the Gaussian
distribution of HI(t) and HQ(t). For complex valued CFR

H(t) = HI(t) + HQ(t), (4.26)

where HI(t) and HQ(t) are the in-phase and quadrature components of H(t) , respec-
tively. |H(t)|2 can be written as

|H(t)|2 = H2
I (t) +H2

Q(t). (4.27)

Since the normalized CFR has unit variance, the variances of HI(t) and HQ(t) are

var{HI(t)} = var{HQ(t)} =
1

2
. (4.28)
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The second expectation term in (4.23) can be written as

E {exp {−zPi,j(t)}} = E
{

exp
{
−zP i,j(H

2
I,i,j(t) +H2

Q,i,j(t))
}}

. (4.29)

Due to the independence between HI,i,j(t) and HQ,i,j(t), (4.29) can be factored into

E {exp {−zPi,j(t)}} = E
{

exp
{
−zP i,jH

2
I,i,j(t)

}}
E
{

exp
{
−zP i,jH

2
Q,i,j(t)

}}
. (4.30)

Both HI,i,j(t) and HQ,i,j(t) follow a Gaussian distribution N (0, 1
2
). Therefore, taking

the in-phase component as example, the first expectation term on the right side of
(4.30) can be calculated as

E
{

exp
{
−zP i,jH

2
I,i,j(t)

}}
=

∞∫
−∞

exp
{
−zP i,jH

2
I,i,j(t)

}
· 1√

π
exp

{
−H2

I,i,j(t)
}

dHI,i,j(t)

(4.31)

=
1√
π

∞∫
−∞

exp
{
−(zP i,j + 1)H2

I,i,j(t)
}

dHI,i,j(t). (4.32)

Using the Gaussian integral

∞∫
−∞

exp{−x2}dx =
√
π, (4.33)

(4.32) can be simplified to

E
{

exp
{
−zP i,jH

2
I,i,j(t)

}}
=

1√
zP i,j + 1

, (4.34)

and thus,

E {exp {−zPi,j(t)}} =
1

zP i,j + 1
. (4.35)

Finally, (4.23) is simplified to

E{γ(t)} = P i,s

∞∫
0

exp
{
−zσ2

w

} ∏
j∈S\s

1

zP i,j + 1
dz. (4.36)

4.2.2 Higher-order moments of SINR

The order ν (ν ≥ 2) moment of SINR is given by

E{(γ(t))ν} = E


 Pi,s(t)∑

j∈S\s
Pi,j(t) + σ2

w


ν . (4.37)
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By applying (4.19), (4.37) becomes

E{(γ(t))ν} = E
{
P ν
i,s(t)

}
E


 1∑

j∈S\s
Pi,j(t) + σ2

w


ν (4.38)

= E
{
P ν
i,s(t)

} 1

Γ(ν)

∞∫
0

zν−1 exp
{
−zσ2

w

} ∏
j∈S\s

E {−zPi,j(t)} dz. (4.39)

Using (4.35), (4.39) can be written as

E{(γ(t))ν} =
E
{
P ν
i,s(t)

}
Γ(ν)

∞∫
0

zν−1 exp
{
−zσ2

w

} ∏
j∈S\s

1

zP i,j + 1
dz. (4.40)

Although it is difficult to give an universal expression for E
{
P ν
i,s(t)

}
, some special

cases can be calculated. One example is the second order moment, which can be used
for calculating the variance of SINR.

4.2.3 Variance of SINR

The variance of SINR can be calculated with

var{γ(t)} = E{γ2(t)} − E2{γ(t)} (4.41)

Using (4.40) with ν = 2, E{γ2
i,s(t)} becomes

E{(γ(t))2} =
E
{
P 2
i,s(t)

}
Γ(2)

∞∫
0

z exp
{
−zσ2

w

} ∏
j∈S\s

1

zP i,j + 1
dz, (4.42)

where the Gamma function,
Γ(2) = 1! = 1. (4.43)

E
{
P 2
i,s(t)

}
can be written as

E{P 2
i,s(t)} = P

2

i,sE{|Hi,j(t)|4} (4.44)

= P
2

i,s

(
E
{
H4

I,i,j(t)
}

+ E
{
H4

Q,i,j(t)
}

+ 2E
{
H2

I,i,j(t)
}

E
{
H2

Q,i,j(t)
})
.

(4.45)

The even order moments of a Gaussian distributed variable can be calculated with its
variance and moment order [88]

E{Hp
I } =

(√
var{HI}

)p
(p− 1)!!, (4.46)
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where p is an even number, !! denotes double factorial. Using (4.28), the expression in
(4.45) is simplified to

E{P 2
i,s(t)} = P

2

i,s

(
3

4
+

3

4
+ 2 · 1

2
· 1

2

)
= 2P

2

i,s. (4.47)

Therefore, the expectation of the squared SINR is

E{γ2(t)} = 2P
2

i,s

∞∫
0

z · exp
{
−σ2

wz
} ∏
j∈S\s

1

zP i,j + 1
dz. (4.48)

And thus, the variance of the SINR can be calculated accordingly.

4.2.4 Autocorrelation function of SINR

The autocorrelation function of SINR can be written as

Rγγ(∆t) = E {γ(t1)γ(t2)} (4.49)

= E

 Pi,s(t1)∑
j∈S\s

Pi,j(t1) + σ2
w

· Pi,s(t2)∑
j∈S\s

Pi,j(t2) + σ2
w

 . (4.50)

Since Pi,s and Pi,j are independent, the numerator and denominator in (4.50) can be
considered separately.

Using (4.21), the SINR is written as

γ(t) = Pi,s(t) ·
1∑

j∈S\s
Pi,j(t) + σ2

w

= Pi,s(t)

∞∫
0

exp

−z
∑
j∈S\s

Pi,j(t) + σ2
w

 dz. (4.51)

Applying (4.51) to (4.50) results in

Rγγ(∆t) = E

Pi,s(t1)Pi,s(t2) ·
∞∫

0

∞∫
0

exp

−z1

∑
j∈S\s

Pi,j(t1) + σ2
w


−z2

∑
j∈S\s

Pi,j(t2) + σ2
w

 dz1dz2

 .

(4.52)

52



4.2 Channel statistics

Assuming the received powers from different cells Pi,j(t), j ∈ {1, 2, · · · , S} are inde-
pendent to each other, (4.52) becomes

Rγγ(∆t) = E {Pi,s(t1)Pi,s(t2)}
∞∫

0

∞∫
0

exp{−σ2
w(z1 + z2)}

·
∏
j∈S\s

E{exp{−z1Pi,j(t1)− z2Pi,j(t2)}}dz1dz2.

(4.53)

The first expectation term in (4.53) is written as:

E {Pi,s(t1)Pi,s(t2)} = E
{
P i,s |Hi,s(t1)|2 P i,s |Hi,s(t2)|2

}
(4.54)

= P
2

i,sE
{
|Hi,s(t1)|2 |Hi,s(t2)|2

}
. (4.55)

Using the in-phase and quadrature components HI(t) and HQ(t), E
{
|H(t1)|2 |H(t2)|2

}
can be written as

E
{
|H(t1)|2 |H(t2)|2

}
= E

{
(H2

I (t1) +H2
Q(t1))(H2

I (t2) +H2
Q(t2))

}
= E

{
H2

I (t1)H2
I (t2) +H2

I (t1)H2
Q(t2) + H2

Q(t1)H2
I (t2) +H2

Q(t1)H2
Q(t2)

}
= E

{
H2

I (t1)H2
I (t2)

}
+ E

{
H2

I (t1)H2
Q(t2)

}
+E

{
H2

Q(t1)H2
I (t2)

}
+ E

{
H2

Q(t1)H2
Q(t2)

}
. (4.56)

Since in Rayleigh fading channels, both HI and HQ are Gaussian distributed with zero
mean, according to Isserlis’ theorem [12], the first term in (4.56) can be calculated as

E
{
H2

I (t1)H2
I (t2)

}
= E {HI(t1)HI(t1)}E {HI(t2)HI(t2)}+ 2E {HI(t1)HI(t2)}E {HI(t1)HI(t2)}
= E

{
H2

I (t1)
}

E
{
H2

I (t2)
}

+ 2E2 {HI(t1)HI(t2)} . (4.57)

The same process can be applied to the other terms from (4.56) as

E
{
H2

I (t1) H2
Q(t2)

}
= E

{
H2

I (t1)
}

E
{
H2

Q(t2)
}

+ 2E2 {HI(t1)HQ(t2)} (4.58)

E
{
H2

Q(t1) H2
I (t2)

}
= E

{
H2

Q(t1)
}

E
{
H2

I (t2)
}

+ 2E2 {HQ(t1)HI(t2)} (4.59)

E
{
H2

Q(t1) H2
Q(t2)

}
= E

{
H2

Q(t1)
}

E
{
H2

Q(t2)
}

+ 2E2 {HQ(t1)HQ(t2)} . (4.60)
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And (4.56) becomes

E
{
|H(t1)|2 |H(t2)|2

}
= E

{
H2

I (t1)
}

E
{
H2

I (t2)
}

+ 2E2 {HI(t1)HI(t2)}
+E

{
H2

I (t1)
}

E
{
H2

Q(t2)
}

+ 2E2 {HIt1)HQ(t2)}
+E

{
H2

Q(t1)
}

E
{
H2

I (t2)
}

+ 2E2 {HQ(t1)HI(t2)}
+E

{
H2

Q(t1)
}

E
{
H2

Q(t2)
}

+ 2E2 {HQ(t1)HQ(t2)} (4.61)

= E2
{
H2

I (t)
}

+ E2
{
H2

Q(t)
}

+ E
{
H2

I (t)
}

E
{
H2

Q(t)
}

+ E
{
H2

Q(t)
}

E
{
H2

I (t)
}

+2
(
E2 {HI(t1)HI(t2)}+ E2 {HI(t1)HQ(t2)}

+E2 {HQ(t1)HI(t2)}+ E2 {HQ(t1)HQ(t2)}
)

(4.62)

= R2
HIHI

(0) +R2
HQHQ

(0) +RHIHI
(0)RHQHQ

(0) +RHQHQ
(0)RHIHI

(0)

+2
(
R2
HIHI

(∆t) +R2
HIHQ

(∆t) +R2
HQHI

(∆t) +R2
HQHQ

(∆t)
)
, (4.63)

where RHIHI
, RHQHQ

, RHIHQ
and RHQHI

are autocorrelation and cross-correlation func-
tions of the in-phase and quadrature components. Since all the interfering signals have
the same symbol duration and carrier frequency as the useful signal. These autocor-
relation and cross-correlation functions are the same for Hi,j,∀j ∈ S. Furthermore,
define

r(∆t) = J0(2πfD∆t). (4.64)

According to (2.12), similar to (3.6) and (3.7), the following relationship holds true

RHIHI
(∆t) = RHQHQ

(∆t) =
1

2
r(∆t) (4.65)

RHIHQ
(∆t) = RHQHI

(∆t) = 0. (4.66)

And (4.55) becomes

E {Pi,s(t1)Pi,s(t2)} = P
2

i,s

(
4R2

HIHI
(0) + 4R2

HIHI
(∆t)

)
= P

2

i,s

(
1 + r2(∆t)

)
. (4.67)

The calculation of the second expectation term in (4.53) is based on the multivariate
Gaussian distribution of HI,i,j(t1), HQ,i,j(t1), HI,i,j(t2) and HQ,i,j(t2).

Define

PI,i,j , P i,j

[
HI,i,j(t1)
HI,i,j(t2)

]
and PQ,i,j , P i,j

[
HQ,i,j(t1)
HQ,i,j(t2)

]
. (4.68)

The second expectation term in (4.53) can be written as

E{exp{−z1Pi,j(t1)− z2Pi,j(t2)}}

= E

{
exp

{
−[PT

I,i,j PT
Q,i,j]

[
diag(z) 0

0 diag(z)

] [
PI,i,j

PQ,i,j

]}}
(4.69)
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where

diag(z) =

[
z1 0
0 z2

]
. (4.70)

The joint probability density function (pdf) of the in-phase and quadrature components
of Pi,j(t1) and Pi,j(t2) is given by

pPI,i,j ,PQ,i,j
(pI,i,jpQ,i,j) =

1

(2π)2(det(Σ))
1
2

· exp

{
−1

2
[pT

I,i,j pT
Q,i,j]Σ

−1

[
pI,i,j

pQ,i,j

]}
, (4.71)

where Σ is the covariance matrix defined as

Σ , P i,j


RHIHI

(0) RHIHI
(∆t) RHIHQ

(0) RHIHQ
(∆t)

RHIHI
(∆t) RHIHI

(0) RHIHQ
(∆t) RHIHQ

(0)
RHIHQ

(0) RHIHQ
(∆t) RHQHQ,i(0) RHQHQ

(∆t)
RHIHQ

(∆t) RHIHQ
(0) RHQHQ

(dt) RHQHQ
(0)

 . (4.72)

Using (4.65) and (4.66), Σ is written as

Σ =
P i,j

2


1 r(∆t) 0 0

r(∆t) 1 0 0
0 0 1 r(∆t)
0 0 r(∆t) 1

 . (4.73)

By definition, the expectation in (4.69) is calculated using the Gaussian pdf as

E{exp{−z1Pi,j(t1)− z2Pi,j(t2)}}

=

∞∫
−∞

· · ·
∞∫

−∞

exp

{
−[pT

I,i,j pT
Q,i,j]

[
diag(z) 0

0 diag(z)

] [
pI,i,j

pQ,i,j

]}

· 1

(2π)2(det(Σ))
1
2

exp

{
−1

2
[pT

I,i,j pT
Q,i,j]Σ

−1

[
pI,i,j

pQ,i,j

]}
dpI,i,jdpQ,i,j (4.74)

=
1

(2π)2(det(Σ))
1
2

∞∫
−∞

· · ·
∞∫

−∞

exp

{
−1

2
[pT

I,i,j pT
Q,i,j]

(
Σ−1 + 2

[
diag(z) 0

0 diag(z)

])[
pI,i,j

pQ,i,j

]}
dpI,i,jdpQ,i,j. (4.75)

Using the following identity

1

(2π)2

∞∫
−∞

· · ·
∞∫

−∞

exp

{
−1

2
xTCx

}
dx = (det(C))

1
2 , (4.76)

55



4 Feedback Strategies for Link level Information

which is proven in Appendix A. (4.75) can be written as

E{exp{−z1Pi,j(t1)− z2Pi,j(t2)}}

=
1

(det(Σ))
1
2

(
det

(
Σ−1 + 2

[
diag(z) 0

0 diag(z)

]))− 1
2

(4.77)

=

(
det

(
I + 2

[
diag(z) 0

0 diag(z)

]
Σ

))− 1
2

(4.78)

=

∣∣∣∣∣∣∣∣
1 + z1P i,j z1P i,jr(∆t) 0 0
z2P i,jr(∆t) 1 + z2P i,j 0 0

0 0 1 + z1P i,j z1P i,jr(∆t)
0 0 z2P i,jr(∆t) 1 + z2P i,j

∣∣∣∣∣∣∣∣
− 1

2

(4.79)

=
1

z1z2P
2

i,j(1− r2(∆t)) + (z1 + z2)P i,j + 1
. (4.80)

The autocorrelation function can be obtained by substituting (4.67) and (4.80) into
(4.53)

Rγγ(∆t) =P
2

i,s

(
1 + r2(∆t)

) ∞∫
0

∞∫
0

exp{−σ2
w(z1 + z2)}

·
∏
j∈S\s

1

z1z2P
2

i,j(1− r2(∆t)) + (z1 + z2)P i,j + 1
dz1dz2. (4.81)

And this expression can be calculated numerically.

4.2.5 Normalized autocovariance function and its approximation

Finally, the normalized autocovariance function is calculated by

Cγγ(∆t) =
Rγγ(∆t)− E2{γ(t)}

var{γ(t)}
. (4.82)

Although this autocovariance function depends on the average Rx power from all the
cells, further experiments show that this dependency is quite weak. Moreover, a simple
squared zero-order Bessel function of the first kind

cγγ(∆t) = J2
0 (2πfD∆t) (4.83)

can offer a good approximation of (4.82).
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Figure 4.8: Normalized autocovariance function and approximation

4.2.6 Numerical results

Simulation setup

For the simulation, a cellular network with 19 eNBs and 57 cells is considered. The
eNBs are equipped with 3-sector antennas. The inter-eNB distance is 500 meters. The
network layout is as shown in Figure 5.5. One single UE moves randomly within a
central cell in the middle. The pathloss model is

Li,j(t) = 15.3 + 18.8 log10 di,j(t) (4.84)

where di,j(t) is the distance between UE i and the eNB of cell j at time t. Some
other parameters are summarized in Table 4.4. Most of the parameters follow 3GPP
standards [9]. The channel responses following the Rayleigh fading model are generated
using the sum-of-sinusoids method from [104].

Approximation

Figure 4.8 shows the normalized autocovariance function from (4.82) and the approx-
imated one from (4.83) for UE traveling at 3 km/h and 30 km/h, respectively. It can
be seen that although the average Rx power P i,j,∀j ∈ S, is involved in the calcula-
tion of the autocovariance function, it actually has minor influence on the final result.
Therefore, (4.82) can be quite well approximated by (4.83). Since (4.83) depends on
only two variables, it is much easier to calculate.
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BS Tx power 46 dBm
Bandwidth 4.32 MHz

Carrier frequency 800 MHz
MS noise figure 9 dB
Mobility model Random walk
Simulation runs 100,000

Table 4.4: Simulation parameters

Modeling accuracy

Among the assumptions made to derive the autocorrelation function, the strongest
one is that with small ∆t, the location of UE does not change. There are two major
contributors to the variation of SINR, one is the fast fading process, and the other
one is the spatial correlation of pathloss due to location change of the UE. When UE
moves faster, this assumption becomes less legitimate. Therefore, a mismatch of the
theoretic model and the simulation results is expected. To confirm that this mismatch
is caused by the strong assumption, simulations considering only Rayleigh fading but
not the location change of UE are also performed and compared.

In Figure 4.9, the approximated autocovariance is compared to simulation results. For
simulations, which consider only Doppler shift but not the location change, the sample
autocovariance matches the approximated autocovariance function quite well, even for
larger ∆t of higher speed. However, for simulations, which take the location change
into account, an apparent mismatch can be observed. Moreover, for faster UE and
larger ∆t, the correlation of fading process approaches 0, but the correlation of path
loss stops the sample covariance from getting to zero.

Estimating moving speed

Since the approximated autocovariance only depends on fD and ∆t, it can be used for
a rough estimation of the moving speed of UE. For a fixed value of ∆t, the dependency
of cγγ and fD can be summarized into a look-up table. The moving UE can measure
its sample autocovariance and use a one dimensional interpolation to find out its
corresponding Doppler frequency. Thus, the velocity can be calculated by using (2.5).
Since the squared Bessel function is not monotonic, this idea is only supposed to work
for very small ∆t.

The relationship of cγγ and fD is illustrated in Figure 4.10, where for a given sample
autocovariance, the Doppler frequency can be directly found. The estimated speeds
v̂ are compared with actual speeds v for different ∆t in Figure 4.11. A simple linear
interpolation is used to obtain these results. For ∆t = 10 ms, UE speed up to 40
km/h can be quite accurately estimated. For smaller ∆t, the steep slope of the cγγ -
fD curve amplifies the mismatch of sample autocovariance and the approximated one,
and thus leads to a larger error. Nevertheless, the cost of implementing this algorithm
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Figure 4.9: Approximated autocovariance function and simulation sample autocovari-
ance with and without considering the location change of the UE

is extremely low due to its simplicity. And this method will be used later in this thesis
to enable an adaptive CQI feedback scheme.

4.3 Compensation of temporal variation

With the help of channel statistics, some CQI prediction schemes can be derived. The
compensation of temporal variation can be done either on the UE side or on the eNB
side. The difference is: On the eNB side, only CQI is available. The prediction Q̂
must be purely based on previous knowledge of Q. The aforementioned noises can
be amplified during the prediction process, causing an inaccurate result. On the UE
side, the original information of SINR is available. The SINR γ̂ can be calculated
and the corresponding CQI can be easily obtained with the aforementioned SINR
to CQI mapping. Therefore, the prediction can be more accurate. However, mobile
handsets generally have very limited battery power, which imposes a constraint on the
computational complexity of the algorithms. In this work, only prediction schemes
based on the SINR are investigated. The same algorithms can be applied to CQI in a
straight forward manner. However, since CQI is a compressed and quantized version
of SINR, as shown in Figure 4.12, the performance is expected to be worse than from
the prediction algorithms directly working on CQI.
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Figure 4.10: Approximated autocovariance and its relationship to fD

4.3.1 Prediction accuracy and throughput

In the presence of noise, the throughput is reduced. After SINR prediction, the pre-
dicted SINR can be mapped to a predicted effective SNR γ̂e(t, b). For noisy prediction,
it can be written as

γ̂e(t, b) = γe(t, b) + ε(t, b), (4.85)

where γe(t, b) is the effective SNR calculated with the actual SINR, ε is the prediction

noise. The predicted CQI Q̂(t, κ) can be directly obtained from γ̂e(t, b) by Table 4.3.

For a transmission with MCS corresponding to given Q̂(t, κ), the data rate can be
calculated by

F (t) =
∑
κ∈K

Bη(Q̂(t, κ))P0(Q̂(t, κ), γe(t, b)). (4.86)

A smaller Q̂(t, κ) leads to a smaller bandwidth efficiency η(Q̂(t, κ)) and a larger Q̂(t, κ)

leads to a dramatic increase of the BLER Pe(Q̂(t, κ), γe(t, b)). Therefore, in both cases,
the overall throughput can be reduced.

To maximize the throughput, the prediction error in terms of mean squared error
(MSE) should be minimized. However, the situation becomes more complicated when
considering retransmissions. A transmission with overestimated CQIs leads to packet
loss and thus to retransmissions. But, an occasional retransmission with higher order
MCS could have better average throughput than constantly successful transmissions
with lower order MCS. Moreover, in multi-user systems, the throughput depends not
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Figure 4.11: Estimated speed comparing to actual speed

only on the CQI feedback, but also on the scheduling algorithm. These issues will be
elaborated with more details in Section 4.4.

4.3.2 Average bandwidth efficiency

To simplify the calculation of average bandwidth efficiency, consider a system with
constant SINR and thus constant effective SNR. Due to the noisy prediction, the CQI
ranges from 0 to 15 with a certain probability distribution. Since all the PRBs within
a certain subband have the same CQI, both time and frequency indices are omitted in
the calculation.

For an arbitrary PRB, according to Table 4.1, define the upper and lower bound of
effective SNR for certain CQI Q̃ as γe(Q̃) and γ

e
(Q̃), respectively. The probability of

transmitting with the MCS corresponding to CQI Q̃ is given as

P (Q̃) =

γe(Q̃)∫
γ
e
(Q̃)

p(γ̂e)dγ̂e, (4.87)

where p(γ̂e) is the pdf of the predicted effective SNR. And the bandwidth efficiency is
calculated by

E =
15∑
Q̃=1

P (Q̃)η(Q̃)P0(Q̃, γe). (4.88)
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Figure 4.12: Temporal variation of SINR and CQI values

From this expression, it is clear that the bandwidth efficiency also depends on the
distribution of the prediction noise.

4.3.3 Prediction schemes for CQI feedback

Since the frequency correlation and temporal correlation can be separated from each
other, according to Chapter 2, the frequency domain PRB index κ is dropped here for
convenience. The same procedure is done for each PRB.

The prediction of SINR is based on a collection of past observations, which is defined
as the prediction window. An AR of prediction algorithms with a finite prediction
window $ can be written as

γ̂(t+ td) =
$∑
ι=0

wιγ(t− ιTb), (4.89)

where td is the feedback delay, $ is the prediction window size Tb is the duration of
a PRB and w is the weighting factor. Without a prediction scheme, the eNB would
directly perform AMC at time t+ td based on the CQI derived from γ(t).
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Short-term average

The simplest prediction scheme is the short-term average scheme. By simply taking

wι,STA =
1

$
, (4.90)

the short-term average scheme is able to average out the fast oscillation and to preserve
the trend of SINR variation [27].

The size of the prediction window is quite important for the short-term average. A
window size, which is too small, is not enough to compensate for fast fading, whereas
a window size, which is too large, ignores spatial variation.

Wiener filtering

Wiener filtering is known as the minimum mean squared error (MMSE) estimator for
stationary process with known autocorrelation. The MSE of the predicted SINR is
given by

ε = E
{

(γ̂(t+ td)− γ(t+ td))2
}
. (4.91)

Expand this expression and substitute (4.89) in as follows

ε = E


(

$∑
ι=0

wιγ(t− ιTb)

)2
+ E

{
γ(t+ td)2

}
− 2E

{
$∑
ι=0

wιγ(t− ιTb) · γ(t+ td)

}
.

(4.92)

Take the derivative with respect to the filter coefficient:

∂ε

∂wι
= 2E

{
$∑
ι=0

wιγ(t− ιTb)
$∑
ν=0

γ(t− νTb)

}
− 2E

{
$∑
ι=0

γ(t− ιTb)γ(t+ td)

}
(4.93)

= 2
$∑
ι=0

$∑
ν=0

E {γ(t− ιTb)γ(t− νTb)}wι − 2E

{
$∑
ι=0

γ(t− ιTb)γ(t+ td)

}
. (4.94)

Letting this derivative be equal to 0 leads to

$∑
ι=0

$∑
ν=0

E {γ(t− ιTb)γ(t− νTb)}wι =
$∑
ι=0

E {γ(t− ιTb)γ(t+ td)} . (4.95)

For stationary process, the following holds true:

E {γ(t− ιTb)γ(t− νTb)} = Rγγ ((ι− ν)Tb) (4.96)

E {γ(t− ιTb)γ(t+ td)} = Rγγ(ιTb + td). (4.97)

Therefore, (4.95) can be written as

$∑
ι=0

$∑
ν=0

Rγγ(ι− ν)wι =
$∑
ι=0

Rγγ(ιTb + td). (4.98)
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This equation written in matrix form yields

Rw = r, (4.99)

where

R =


Rγγ(0) Rγγ(Tb) · · · Rγγ($)
Rγγ(Tb) Rγγ(0) · · · Rγγ($ − Tb)

...
...

. . .
...

Rγγ($) Rγγ($ − Tb) · · · Rγγ(0)

 (4.100)

w = (w0, w1, · · · , w$)T (4.101)

r = (Rγγ(td), Rγγ(td + Tb), · · · , Rγγ(td +$Tb))T . (4.102)

And the filter coefficients can be found by

wWiener = R−1r. (4.103)

Wiener filtering is quite often adopted for channel estimation algorithms. Generally
speaking, if the autocorrelation is too low, the performance of Wiener filtering can be
quite poor. Therefore, for very fast fading channels, Wiener filtering is barely used.
However, from the results of last section, the spatial correlation plays an important
role in SINR autocorrelation and prevents the autocorrelation function from going to
zero. Hence, in SINR prediction, Wiener filter is a good choice. In addition, since the
autocorrelation function is unknown, the sample autocorrelation can be used instead.

Extrapolation

Without assuming known statistics, extrapolation is a commonly used tool for fore-
casting missing values in time-series. Most commonly used extrapolation functions
are linear extrapolation and cubic spline extrapolation. In this thesis, cubic spline
extrapolation is considered.

Cubic spline functions are piecewise defined polynomials of degree three of the form

γ̂(t) =


γ̃1(t) if t1 ≤ t < t2,

γ̃2(t) if t2 ≤ t < t3,
...

γ̃N(t) if tN ≤ t < tN+1,

(4.104)

where
γ̃n(t) = c3(t− tn)3 + c2(t− tn)2 + c1(t− tn) + c0. (4.105)

Assuming the spline function and its first and second derivatives are continuous in the
interval [t1, tN+1], the unknown coefficients can be solved, with the natural boundary
conditions γ̂′′(t1) = γ̂′′(tN+1) = 0 [14].
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Spline extrapolation does not need statistics as a priori information and provides an
almost perfect prediction for users with low velocity, as shown in Figure 4.13 (a).
However, if the user moves faster, the boundary condition of γ̂′′(tN+1) = 0 can lead to
severe numerical problem, as shown in Figure 4.13 (b) and (c). The numerical errors
can be reduced by introducing additional boundary conditions.

Noticing that the probability of having large difference of CQI between two adjacent
PRBs

∆Q(t) = Q(t)−Q(t− Tb) (4.106)

is quite small, as shown in Table 4.5, an artificial restriction

∣∣∣Q̂(t+ td)− Q̂(t+ td − Tb)
∣∣∣ ≤ ∆Qmax (4.107)

can be applied to the extrapolation. Using the relationship of SINR and CQI in
Figure 4.5, corresponding ∆γmax can be calculated. As shown in Figure 4.13 (d), using
this addition restriction, the numerical problem can be reduced. But, extrapolation
still has no advantage over other prediction methods for users with moving speed
higher than 30 km/h.

Adaptive prediction scheme

Since extrapolation is very effective for low speed, and Wiener filtering is effective
for medium to high speed, an adaptive method can be derived by choosing a proper
prediction scheme for certain speed. With the help of the approximated autocovariance
function, the adaptive prediction scheme can be easily defined as using extrapolation
for users with speed lower than 30 km/h and Wiener filtering for users with speed
equal to or higher than 30 km/h.

Speed [km/h] p(∆Q > 1) p(∆Q > 2)
3 9.97× 10−5 8.37× 10−7

10 1.37× 10−4 2.51× 10−6

30 7.82× 10−3 3.88× 10−4

50 4.52× 10−2 4.68× 10−3

Table 4.5: Statistics of differences between neighboring CQI
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Figure 4.13: (a) (b) (c): Simulated SINR curves for UE at 3 km/h, 10 km/h, 30
km/h, respectively. (d): at 30 km/h with additional boundary conditions
∆Qmax = 1, feedback delay is td = 10 ms
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Other prediction schemes

Several other CQI prediction schemes have been suggested from a number of publica-
tions. For example, a normalized least mean square (NLMS) scheme is proposed in
[84], a first order adaptive infinite impulse response (IIR) filter is implemented in [25].
However, during our research, these schemes result in rather poor performance. The
main reason is, that mostly a very small feedback delay of 1 ms is considered, and
the performance of these algorithms drop significantly if the feedback delay becomes
larger. For a real system, the feedback delay can be as high as 10 ms [35]. In this
work, a worst case scenario is considered, where the feedback delay is fixed to 10 ms.

4.3.4 Numerical results

The same parameter setting as in Section 4.2 is used for numerical evaluation. A single
user system is considered to isolate the influence of CQI prediction to the throughput.

In Figure 4.14, the MSE of CQI prediction is plotted. It can be seen that for very low
speed, the extrapolation scheme offers extremely accurate prediction. However, when
the speed becomes higher, the accuracy of the extrapolation scheme decreases dras-
tically. In contrast, for very low speed, using short-term average is even worse than
not using any prediction at all. But for higher speed, the short-term average scheme
provides a significantly better accuracy than using no prediction. The only schemes
which have advantage over no prediction in both low speed and high speed are Wiener
filtering and the adaptive prediction scheme. Especially for the adaptive prediction
scheme, due to the accurate estimation of moving speed using the approximated au-
tocovariance function, the performance is almost perfect matches with extrapolation
for low speed and Wiener filtering for higher speed.

An interesting phenomenon is that the MSE is not monotonically increasing as the
speed gets higher. A possible explanation is that for users moving with higher speed,
spatial correlation plays a more important role in the autocorrelation function. As
shown in Figure 4.16, for the same ∆, the correlation of the SINR is not necessarily a
monotonic function of speed.

The throughput performance is shown in Figure 4.15. The throughput result is al-
most consistent with the MSE result. For lower speed users, due to the accurate
CQI prediction, the throughput is higher. The extrapolation scheme provides the best
throughput for low speed users, whereas Wiener filtering offers the best throughput
for high speed users. The adaptive prediction scheme provides the best overall per-
formance. Throughout the whole speed range, using a proper CQI prediction scheme
can boost the throughput by a factor of 10%− 25%.

4.3.5 Prediction noise and Gaussian approximation

Although the probability of transmitting with certain MCS is given in (4.87), without
a known distribution of the prediction error, the calculation of bandwidth efficiency
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Figure 4.14: MSE of predicted CQI value for single user
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Figure 4.15: Average throughput for single user
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Figure 4.16: Measured autocovariance function for UEs moving of different speeds

cannot be done. As a matter of fact, the distribution of the prediction error in dB
scale is quite close to a Gaussian distribution as shown in Figure 4.17, where the
Gaussian pdfs have the same mean value and variance as the prediction error obtained
from simulation. Therefore, the prediction noise can be approximated by an Gaussian
distributed random variable as

p(ε) ≈ 1√
2πσ2

ε

exp

{
−(ε− µε)2

2σ2
ε

}
(4.108)

where µε and σ2
ε are the mean value and variance of the prediction error, respectively.

Accordingly, the predicted effective SNR can be written as

p(γ̂e) =
1√

2πσ2
ε

exp

{
−(γ̂e − µε − γe)

2

2σ2
ε

}
(4.109)

Using the Gaussian approximation, (4.87) becomes

P
(
Q̃
)

=

γe(Q̃)∫
γ
e(Q̃)

1√
2πσ2

ε

exp

{
−(γ̂e − µε − γe)

2

2σ2
ε

}
dγ̂e (4.110)

=
1

2

erf

γe

(
Q̃
)
− µε − γe√
2σ2

ε

− erf

γe

(
Q̃
)
− µε − γe√
2σ2

ε

 , (4.111)
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where erf(·) is the error function defined as

erf(x) =
2√
π

∫ x

0

exp(−t2)dt. (4.112)

With (4.111), the bandwidth efficiency can be calculated with (4.88), as shown in
Figure 4.19. Clearly, for an unbiased estimator, as the noise variance increases, the
bandwidth efficiency decreases.

Moreover, although the calculation of bandwidth efficiency assumes a static channel,
the average throughput of a moving user can be easily calculated by multiplying the
number of PRBs, the bandwidth of a PRB and the average bandwidth efficiency. The
Gaussian approximation is validated with the average throughput for moving users.
The average throughput in Figure 4.18 is calculated using the Gaussian approxima-
tion, with µε and σ2

ε extracted from the simulation results using the aforementioned
prediction schemes. Comparing to Figure 4.15, the difference is smaller than 1 Mbit/s.
Therefore, the Gaussian approximation is an accurate approximation.
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Figure 4.17: Measured error distribution and Gaussian approximation at 50 km/h
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Figure 4.18: Average throughput for single user using Gaussian approximation
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Figure 4.19: Bandwidth efficiency for LTE with Gaussian distributed prediction noise

4.4 Channel prediction in the presence of HARQ

Due to the mismatch of real time channel conditions and the information at the eNB,
downlink transmissions are not always successful. In case of a failed transmission, the
HARQ mechanism is triggered.

4.4.1 HARQ basics

HARQ is a hybrid combination of forward error correction (FEC) and automatic repeat
request (ARQ). In the LTE protocol stack, HARQ works at the physical layer (PHY)
layer but is controlled by the MAC layer. If a CRC error is detected at the UE, a
negative acknowledgment (NACK) signal is send back to the eNB to evoke the HARQ
process.

HARQ types

There are three types of HARQ: Type I, Type II and Type III [37].

Type I HARQ is the simplest HARQ scheme, where both error detection and FEC
information are attached to the data. If the channel quality is sufficiently good, the
transmission errors can be corrected using parity bits and an acknowledgment (ACK)
signal is sent back. Otherwise, the receiver discards this package, sends a NACK signal
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and the same package is retransmitted. Comparing to ARQ, which always asks for
retransmission whenever there are erroneous bits detected, Type I HARQ can improve
the efficiency if the errors are correctable. However, if the channel is very good, the
large number of redundancy bits reduce the bandwidth efficiency. On the other hand,
if the channel condition is very poor, the FEC may not be powerful enough and thus
many retransmissions are needed.

In Type II HARQ, the first transmission may carry only data and error detection bits.
In case of erroneous transmission, the original package is not discarded. The parity
bits are sent to combine with the data bits and to correct the errors. Consider the fact
that FEC bits are generally much more than error detection bits, Type II HARQ can
offer better efficiency in a good channel condition [24].

Type III HARQ decreases the coding rate by sending additional redundancy bits in
each retransmission. It ensures that each retransmission is self-decodable. The decoder
can combine these multiple copies weighted by the SNR of the received signal for each
retransmission. Therefore, time domain diversity is exploited.

Soft combining

In Type II and III HARQ, the original and retransmitted packages are combined to
improve the decoder performance. There are two main soft combining methods in
HARQ, namely, chase combining (CC) and incremental redundancy (IR).

In CC, every retransmission carries the same data and parity bits as the original
transmission. Maximum-ratio combining is used to combine different copies of the
same bits. Since all the transmission are identical, CC can be treated as an additional
repetition coding.

In IR, each retransmission consists of new redundancy bits from the channel encoder.
The sets of coded bits are generated by puncturing. The combination effectively gives
a lower coding rate and thus provide better error performance. It has been shown that
in mobile cellular networks, IR almost always outperforms CC, at the cost of increased
complexity [32] [16].

Transmission protocol

The performance of HARQ is limited by buffering capability. Three different trans-
mission protocols are commonly used: stop-and-wait, go-back-N and selective repeat.

The stop-and-wait protocol is the simplest one. After sending a package, the trans-
mitter remains idle, before it receives an ACK or NACK signal from the receiver. The
stop-and-wait protocol has a small signaling overhead as well as buffer requirement.
However, some radio resources are wasted on waiting for the response signal. This
problem becomes more severe, when propagation delay is long.

To improve efficiency, go-back-N protocol is proposed. In go-back-N, the transmitter
keeps sending packages until it receives a NACK message. When a NACK signal is
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received, the transmitter has to resend the last “N” packages including the erroneous
one. Clearly, an index number of the package has to be composed into the ACK/NACK
signals. Moreover, more buffer capacity is required on the receiver side.

The selective repeat protocol is similar to go-back-N, except only the erroneous package
is retransmitted. Therefore, the bandwidth efficiency can be improved. However, it is
difficult to arrange packages in the desired order without a complex buffering scheme.

4.4.2 HARQ in LTE

In LTE, an IR HARQ with a 1/3 turbo encoder is used for FEC. The transport block
CRC is used for error detection. The receiver only receives different punctured versions
of the same turbo-encoded data, each of these retransmissions are self-decodable. Thus,
it a Type III HARQ.

For the transmission protocol, LTE adopts a variant of the stop-and-wait protocol,
the N-channel stop-and-wait [51]. There are “N” channels capable of buffering and
retransmitting packages. When a channel is waiting for acknowledgement, the next one
starts to transmit. Therefore, no bandwidth is wasted on waiting for acknowledgement;
the ACK/NACK signal needs only a single bit; and the implementation is still simple.

Since in IR HARQ, different punctured versions of the turbo-encoded data are com-
bined, an improvement of the BLER is expected. Figure 4.20 shows the effective SNR
gains of 3 retransmissions, with the same BLER constraint. In [41], the effective SNR
gain is approximated by

∆γrre = µmod(rre)Rturbo + εmod(rre) (4.113)

where rre is the retransmission index, µmod and εmod are modulation related parameters.
Rturbo listed in Table 4.6. The turbo code rate Rturbo corresponds to each CQI can be
found in Table 4.1.

Modulation rre Rturbo εmod

1 0.0804 2.89
4-QAM 2 0.1628 4.57

3 0.2006 5.62
1 0.0420 1.17

16-QAM 2 0.8435 0.74
3 0.9464 1.15
1 0.8996 -1.23

64-QAM 2 1.2288 -0.71
3 1.2728 0.15

Table 4.6: HARQ model parameters for LTE
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4.4.3 CQI feedback with different QoS constraints

With HARQ, another QoS constraint of latency shall be investigated. If the original
transmission fails, there is a period before the lost packet can be detected and re-
transmitted. Therefore, the overall latency is directly associated with the frequency
of retransmission.

Buffering

In the retransmission, the MCS of the packet is the same as the original one, to make
the decoder work properly. Hence, after receiving an NACK signal, the eNB has
to schedule a PRB with sufficiently good channel quality for retransmitting the lost
packet. Two different buffering schemes are considered here.

The first scheme is referred as unlimited buffering. In his case, all the lost packets are
queued in the buffer in chronological order. Whenever a new PRB is available, the
predicted CQI of this PRB is compared with the corresponding CQI of the queueing
packet sequentially. The first packet with a CQI smaller than or equal to the predicted
CQI will be transmitted using this PRB. Only if all the packets in the buffer require
better channel quality, a new packet is transmitted. Unlimited buffering provides
the best effort to eventually get all the packets transferred. However, if there are
many queued packets, new packets potentially have to wait a long time before a PRB
is available. Therefore, unlimited buffering is a proper strategy for delay tolerant
applications. In practice, if the buffer is large enough so that no overflow will happen,
it can be considered as unlimited buffering.
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The other option is limited buffering, where the only difference is the number of packets
in the queue is bounded by a buffer size. Older packets are discarded, if the buffer is
full. This buffering scheme is more suitable for realtime applications, e.g., voice over
Internet protocol (VoIP), where the latency is more critical and the outdated packets
are useless.

Throughput and approximated bandwidth efficiency

Consider the first transmission of a certain PRB at time t0, the probability of a suc-
cessful transmission is P0(Q(t0, κ), γe(t0, b)). Therefore, the probability of the first
retransmission is 1 − P0(Q(t0, κ), γe(t0, b)). Moreover, since the MCS used for the
retransmission is the same as the original transmission, the probability that the re-
transmission is successful at trre , is determined by the channel condition at trre and the
effective SNR gain.

Define the success rate of retransmission rre as

Prre

(
Q̂(t0, κ), γe(trre , b)

)
= 1− Pe

(
Q̂(t0, κ), γe(trre , b) + ∆γrre

)
, (4.114)

for PRB κ with the rre-th retransmission, the average throughput at trre is written as

F (trre , κ) = Bη
(
Q̂(t, κ)

)
Prre

(
Q̂(t0, κ), γe(trre , b)

)
. (4.115)

Furthermore, in this case, since rre +1 time slots are used for successful delivery of one
PRB, one time slot only carries 1

rre+1
of a PRB on average. On the one hand, with a

fixed MCS, as the number of retransmission grows, the average throughput decreases.
On the other hand, the retransmissions also provide an effective SNR gain, and thus
enable successful transmission with higher order MCS. If the PRB with higher order
MCS can be successfully transmitted, the throughput can be potentially increased.

To find out the impact of HARQ on the average bandwidth efficiency, consider a
system with constant SINR. In addition, it is assumed that the maximum number of
retransmissions is 3.

For a given prediction of CQI Q̂, the calculation of average bandwidth efficiency re-
quires three building blocks, namely, the probability to have rre-th retransmission,
the probability that the original transmission or the rre-th retransmission is success-
ful and the bandwidth efficiency for the successful transmissions. Hence, the average
bandwidth efficiency is given by:

E =η(Q̂)P0(Q̂, γe) +
1

2
η(Q̂)

(
1− P0(Q̂, γe)

)
P1(Q̂, γe)

+
1

3
η(Q̂)

(
1− P0(Q̂, γe)

)(
1− P1(Q̂, γe)

)
P2(Q̂, γe)

+
1

4
η(Q̂)

(
1− P0(Q̂, γe)

)(
1− P1(Q̂, γe)

)(
1− P2(Q̂, γe)

)
P3(Q̂.γe). (4.116)
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Figure 4.21: Bandwidth efficiency for LTE with Gaussian distributed prediction noise
and HARQ

The prediction noise is again modeled as a Gaussian distributed random variable. Since
the distribution of prediction noise depends on the moving speed, for user travelling at
a constant speed, the noise distribution is assumed to be static. Finally, the average
bandwidth efficiency is given as

E =
15∑
Q̃=1

P (Q̃)

(
η(Q̃)P0(Q̃, γe) +

1

2
η(Q̃)

(
1− P0(Q̃, γe)

)
P1(Q̃, γe)

+
1

3
η(Q̃)

(
1− P0(Q̃, γe)

)(
1− P1(Q̃, γe)

)
P2(Q̃, γe)

+
1

4
η(Q̃)

(
1− P0(Q̃, γe)

)(
1− P1(Q̃, γe)

)(
1− P2(Q̃, γe)

)
P3(Q̃.γe)

)
, (4.117)

where P (Q̃) can be calculated from (4.111).

Clearly, the calculation above is for the case of unlimited buffering, since a drop of
packet without 3 retransmission attempts is not considered.

Comparing (4.117) and (4.88), it is easy to notice that, with the same prediction
noise, the average bandwidth efficiency of a system with HARQ is higher than without
HARQ.
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Overestimation and underestimation

It can be seen from (4.111), that the probability of having a certain predicted CQI
value does not only depend on the variance of the prediction noise but also on the mean
value. The estimation of future CQI is not always unbiased. During the investigation,
several predictors show a biased behavior. That is, the mean value of the prediction
noise µε 6= 0. Therefore, µε also has an influence on the bandwidth efficiency.

For µε > 0, the predictor tends to overestimate the effective SNR. Therefore, higher
order MCS has a bigger chance to be used. In this case, the probability of retrans-
mission is higher. At the same time, for each successful transmission, the data rate is
potentially higher.

For µε < 0, the predictor tends to underestimate the effective SNR. In this case, lower
order MCS is more probable to be used and the error probability is potentially lower.
Therefore, the latency is smaller.

As shown in Figure 4.22, for a biased predictor with µε = 1, the bandwidth efficiency
is better than for an unbiased predictor for all SNR value. However, this trick is not
universal, if µε is increased to 10, the bandwidth efficiency for smaller SNR becomes
lower. Because higher order MCSs are almost always used, and thus causing a very
high BLER for channels with low SNR values. In contrast, for µε < 0, the bandwidth
efficiency is always lower than the unbiased predictor.

The impact µε on biased prediction is also associated with σ2
ε . For a small σ2

ε , the
prediction is accurate, and the average bandwidth efficiency is close to the limit. In
this case, a biased predictor is less effective. As shown in Figure 4.23, with σ2

ε = 10,
the predictor with µε = 1 can still provide slight improvement. But µε = 10 is already
much worse than the unbiased one.

4.4.4 Numerical results

The throughput of systems with HARQ is shown in Figure 4.26 and Figure 4.27 for
unlimited buffering and limited buffering, respectively. For limited buffering, the buffer
size is 6 PRBs. The throughput for unlimited buffering is higher than for limited
buffering as expected. In addition, the overall success rate of unlimited buffering is
close to 100 % for most of the prediction methods, as shown in Figure 4.25.

Although a larger buffer size offers advantages for throughput and overall success
rate, the latency is also longer. As shown in Figure 4.24, a smaller buffer size has
significantly smaller average latency.

As a conclusion, a smaller buffer size should be applied to latency sensitive applications,
whereas a larger buffer size can provide higher throughput.
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Figure 4.22: Bandwidth efficiency with biased predictor, σ2
ε = 100
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Figure 4.23: Bandwidth efficiency with biased predictor, σ2
ε = 10
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Figure 4.24: Latency for single user with HARQ

0 50 100 150 200 250

0.5

0.6

0.7

0.8

0.9

1

Speed [km/h]

Su
cc

es
s 

ra
te

 

 

No prediction
Extrapolation
Wiener
Average
Adaptive

Unlimited buffering

Limited buffering

Figure 4.25: Success rate for single user with HARQ

80



4.4 Channel prediction in the presence of HARQ

0 50 100 150 200 250
2

3

4

5

6

7

8

9

10

11

12
x 10

6

Speed [km/h]

A
va

ra
ge

 th
ro

ug
hp

ut
 [

bi
t/s

]

 

 
No prediction
Extrapolation
Wiener
Average
Adaptive

Figure 4.26: Average throughput for single UE with HARQ, unlimited buffer
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Figure 4.27: Average throughput for single UE with HARQ, limited buffer
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4.5 Multi-user system

The main purpose of using multi-user system in this thesis is to evaluate the perfor-
mance of CQI prediction schemes in such environment. In current LTE standards,
subcarrier level power allocation is still unavailable. Therefore, the Tx power on dif-
ferent PRBs are equally distributed. The resource allocation problem is simplified to
PRB assignment based on CQI. Due to the extent of this thesis, this part only gives
an example of using CQI as the input of scheduling algorithm, without discussing
optimality.

4.5.1 Multi-user resource allocation

Apart from providing high total transmission data rates in the downlink, the scheduler
also considers the data rate fairness among UEs in order to assure an ideal environment
to evaluate the effect of prediction schemes on system throughput. For this purpose,
CQI values are derived to a priority metric using proportional fair (PF) scheduling
algorithm [49].

In LTE, the physical resources are reassigned for each transmission time interval (TTI).
For a system with NUE UEs and NPRB PRBs, during a TTI, a priority metric matrix

M(t) =


M1,1(t) M1,2(t) · · · M1,NUE

(t)
M2,1(t) M2,2(t) · · · M2,NUE

(t)
...

...
. . .

...
MNPRB,1(t) MNPRB,2(t) · · · MNPRB,NUE

(t)

 (4.118)

is produced at each eNB. Its entry Mκ,i(t) is given as:

Mκ,i(t) =
F̂κ,i(t)

F i(t)
(4.119)

where κ is the index of PRB, F̂κ,i(t) is the expected throughput, which is the instan-
taneous supportable data rate at time t and can be derived from the current CQI
reported at eNB. F i(t) is the past average throughput of UE i till time t, which is
given by [46]:

F i(t) = (1− α)F i(t− Tb) +
∑
κ∈Ki

αFκ,i(t− Tb), (4.120)

where α is a control parameter of fairness among UEs. With a smaller α, the scheduler
tends to allocate more resources to the UEs, which have a low average bit rate in the
past.

Based on M(t), the scheduling procedure is performed, as shown in Algorithm 1 [34].
The set of all available PRBs is defined as P , and the set of all UEs having permission
to be scheduled is defined asM. The set of sub-bands assigned to UE i is denoted by
Ki. In each iteration, a PRB is assigned to the UE with the largest priority metric to
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achieve proportional fairness. And this UE has no permission to be scheduled until the
end of this TTI, unless there are still PRBs available after all UEs have been assigned.
This procedure is repeated until there is no PRB left in the current TTI.

Algorithm 1 Scheduling algorithm based on priority metric

P ← {1, 2, ..., NPRB}
M ← {1, 2, ..., NUE}
Ki = ∅,∀i = 1, ..., NUE

repeat
(κ, i)← arg max

κ̃∈P ,̃i∈M
Mκ̃,̃i

Ki ← Ki ∪ {κ}
P ← P \ {κ}
M ←M\ {i}
if M = ∅ then
M← {1, 2, ..., NUE}

end if
until P = ∅

4.5.2 Numerical results

In the simulations, a network consisting 27 UEs is considered. The UEs are divided
into small groups, where each group has 3 UEs moving with a constant speed from the
set: {3, 10, 20, 30, 40, 50, 120, 150, 250} km/h. The other parameters are the same
as in the previous simulations in this chapter.

The best CQI scheduling algorithm [75] is also presented here as reference. In the best
CQI scheduling algorithm, a PRB is always assigned to the UE with largest CQI, to
ensure maximum throughput.

Four different values of α are considered, namely, α = 10−1, 10−2, 10−3 and α = 10−4.
Mean throughput and fairness are compared, where the fairness index is defined as
[77]

ϕ =

(
NUE∑
i=1

Fi

)2

NUE

NUE∑
i=1

F 2
i

. (4.121)

The maximum value of ϕ = 1 can be achieved, if all the users have the same through-
put.

The mean throughput among UEs is shown in Figure 4.28, where the best CQI schedul-
ing shows the best throughput for all the prediction schemes, except for extrapolation.
The reason is that as shown in Figure 4.14, for the UEs with higher speed, the predic-
tion accuracy of extrapolation is so bad, that the current predicted CQIs are effectively
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random. This is also the reason for the high fairness of extrapolation, as shown in Fig-
ure 4.29. But an averaged throughput can still reflect the channel condition. Therefore,
with the PF scheduler, the mean throughput for extrapolation is even better than the
short-term average scheme.

Furthermore, as the value of α goes up, the throughput goes down, whereas the fair-
ness goes up, as shown in Figure 4.29. The best CQI scheme shows rather poor
fairness in most of the cases. It is also shown that the adaptive prediction scheme
has slightly worse fairness than the short-term average scheme, however significantly
better throughput. Therefore, it can be concluded that the adaptive prediction scheme
is overall the best prediction scheme in this comparison.
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Figure 4.28: Mean value of average throughput for multiple users
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The control and optimization of cellular networks must be based on channel state
information (CSI). However, as described in Chapter 4, perfect CSI is not available at
the basestation, due to the doubly selective channel and limited feedback. Therefore,
network control strategies should be based on the quantized feedback, namely, the
CQI. On the one hand, the imperfect channel feedback undermines the performance
of the network. On the other hand, the highly quantized nature of CQI makes the
designing of very low complexity algorithms possible.

In this chapter, interference management through power control is considered as a case
study of cellular network control strategies based on CQI. Heuristic algorithms are
developed to optimize different KPIs. The performance of these strategies is evaluated
by a network level simulator.

Parts of this chapter have been published in [43], [29], [94], [95] and [96].

5.1 Interference management in heterogeneous
network through Tx power control

LTE is aiming at providing ubiquitous connectivity. However, indoor users usually
suffer from strong penetration loss due to building walls. As a consequence of the
increasing usage of data traffic, a macro-only network is no longer able to solve this
problem. Therefore, femtocells are proposed as an economical solution to serve indoor
UEs [22]. Femtocells introduce home evolved node B (HeNB) as low-power short range
base stations, which are connected to the backhaul network via broadband connections.
HeNBs generally have a maximum Tx power of 10-20 dBm, which results in a covered
range of 10-30 meters. Due to the shield of electro-magnetic wave caused by building
walls, HeNBs are supposed to have limited interference to the outdoor users, while
giving the indoor users a seamless mobile connection. Thus, an efficient spatial reuse
of the spectrum can be achieved in a heterogeneous network with overlayed macro-
and femtocells [76] [18].

The deployment of femtocells can be categorized in different ways. According to access
mode, they can be divided into open access and closed subscriber group (CSG), where
open access grants every user the right to connect to a femtocell, and CSG gives service
only to the users with proper licences [57]. According to spectrum usage, femtocells can
either share the frequency band with macrocells to maximize the spectrum utilization
or use a dedicated frequency band to avoid interference [66].
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Figure 5.1: Partial frequency sharing

Although the dedicated channel deployment avoids the problem of CCI, both eNBs
and HeNBs can only have a part of the available spectrum, thus have smaller band-
width and possibly lower data throughput [57]. For this reason, partial sharing of the
spectrum, as shown in Figure 5.1, is usually preferred, where the eNBs can use the
full available frequency band and HeNBs can only use a part of it. The overlapped
frequency band leads to CCI, which should be mitigated by using radio resource allo-
cation and Tx power control.

The open access femtocells are usually deployed by the operators or enterprises to boost
the service in user-concentrated indoor area, whereas the CSG are usually deployed
by end users, who want to improve the signal quality at home. Due to this fact, the
CSG HeNBs can be in suboptimal locations, with unknown environment and turned
on and off randomly. In contrast to macrocells, which have fixed location and can be
optimized with static location related information, CSG femtocells are preferred to be
managed in an autonomous manner due to their plug-and-play property.

In a frequency sharing CSG system, the CCI is inevitable. Especially the macrocell
user equipment (MUE) close to a femtocell could be severely interfered, if the HeNB
is serving the home user equipment (HUE) with maximal Tx power. Therefore, the
necessity of interference mitigation must be addressed [10]. Interference mitigation
can be achieved in different ways, such as radio resource management, handover opti-
mization and HeNB power control. The Tx power control of HeNB will be elaborated
in this section.

In previous works, an adaptive power control based on signal to interference ratio (SIR)
at cell edge is described in [57], where full knowledge of network layout is required. A
distance based method is proposed in [23], which guaranties that the HUE has at least
the same receive power as an MUE in the same location but without building walls.
This model also requires a large amount of information, such as cell locations, power
levels, antenna orientations and gains, etc. In addition, this model depends heavily
on a reliable pathloss model. Another scheme based on the measured received power
from eNB is also proposed in [23], where no location information is required. In [60],
another adaptive power control scheme is proposed to utilized not only the downlink
Rx power from macrocell but also the uplink Rx power from MUE. These methods
aim at providing the same signal strength for the HUE as an outdoor MUE in the
same location. As a drawback, for the area on cell edges, where the macrocell signal
level is already poor, femtocells are not able to deliver good performance for HUEs.
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Furthermore, the data rate requirement of different service types are not taken into
consideration. The result is, the Tx power is higher than a sufficient level for some
service which requires only a small data rate.

In a realistic scenario, the communication between eNB and HeNB is restricted, i.e.,
although both eNB and HeNB are connected to the back haul network with wired
broadband connections, the communication between eNB and HeNB is only at a coarse
time scale. That means, HeNB can not be controlled by a single entity in a realtime
centralized fashion. Therefore, a decentralized solution is preferred. In this section, a
fully decentralized, self-organized heuristic based on CQI is proposed for the downlink
power control and interference mitigation in LTE femtocells. The proposed power
control schemes dynamically adjust the Tx power to adapt to the UE service types
and QoS requirements. The proposed scheme makes no strong assumptions, such as
the knowledge of the whole network or location of every UE. Therefore, it is robust to
the change of network environment.

5.1.1 System model

Consider a network with partial frequency sharing, CSG femtocells. The interfer-
ence scenarios is demonstrated in Figure 5.3, where on top of the conventional co-tier
interference among macrocells, several new kinds of interference arises, as shown in
Table 5.1 [72]. The HeNB to HUE interference cannot be neglected, if the femtocells
are densely deployed. The total number of cells in the network can be written as

S = SMC + SFC, (5.1)

where SMC is the number macrocells and SFC is the number of femtocells. The SINR
can be calculated with the Rx power of the signal and interferences. Taking a HUE i,
which suffers from both co-tier and cross-tier interference, as an example, the SINR is
given by

γi,s(t) =
Pi,s(t)

SMC∑
j=1

Pi,j(t) +
S∑

j=SMC+1,j 6=s
Pi,j(t) + σ2

w

, (5.2)

where the indices of macrocells are smaller than the indices of femtocells. In practice,
the femtocells have very small Tx power, thus, some Pi,j, (j > SMC) would be close to
zero and negligible. The SINR of other UEs can be calculated similarly.

Channel model

The Rx power can be calculated with (4.7), where the pathloss is commonly modeled
with the general form of

Li,j(t) = A+ C log di,j(t) (5.3)

where parameters A and C must be empirically determined according to the radio
wave propagation environment and di,j is the distance between base station j and user
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Figure 5.2: 3GPP electrical antenna tilt model

i. In addition, the wall penetration loss should be applied to the pathloss, as shown
in Figure 5.4. In this case the pathloss can be written as

Li,j(t) = A+ C log di,j(t) + Lw (5.4)

where Lw is the wall penetration loss.

Multi-path channel is considered in this thesis, where each path follows the Rayleigh
fading model. An exponential power delay profile is also assumed.

Three-sector antennas are used in the eNBs. The standardized 3GPP antenna azimuth
pattern is adopted in this work [9]. The azimuth pattern is modelled as a Gaussian-
shaped main beam with a constant side lobe floor

G(θ) = −min

(
12

(
θ

θ3dB

)2

, Am

)
(5.5)

where θ is the azimuth angle, θ3dB is the half power beam width (HPBW) and Am is
the constant side lobe floor.

Traffic model

In most of the literatures, the system performance is evaluated with channel capacity,
which is directly deduced from the SINR using Shannon’s formula [57] [56]. However,
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Figure 5.3: Co-tier and cross-tier interference in heterogeneous networks, interferences
are marked in broken lines. Interferences from neighboring macrocells are
not shown

this traffic model is unrealistic in real systems, especially for users who use voice
communications. As long as the QoS requirement is met, the user cannot benefit from
extra frequency band or further boost of signal strength.

In this work, the data traffic is modeled in a less abstract level. Three kinds of services
are specified, namely, VoIP service, data service and web service. The VoIP users have
the highest priority, which means the frequency resources will be first allocated to the
VoIP users. The data rate requirement of VoIP users is fixed to 64 kbps, in another
word, the throughput per unit energy can only be improved by reducing the power
margin but not by increasing the data rate. Thus, this kind of user is also called margin
adaptive (MA). The data users are also margin adaptive, but their priority is lower
than the VoIP users. The data rate requirement for data users is a random number in
the range of [512 - 2000] kbps. In contrast, the web users have a minimum data rate
requirement, and the data rate should be maximized subject to the power limit. This
kind of user is also called rate adaptive (RA) [55]. The assumed distribution of the
users with different services is summarized in Tab. 5.2.

Aggressor Victim Type
eNB MUE Co-tier
eNB HUE Cross-tier

HeNB MUE Cross-tier
HeNB HUE Co-tier

Table 5.1: Co-tier and cross-tier interference table
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Figure 5.4: Rx power in heterogeneous network

Resource allocation

The resource allocation scheme should take both efficiency and fairness into account.
Due to the frequency selective channels, each UE has different CQIs on different PRBs.
The UEs with largest variation in their CQIs are most sensitive in the resource allo-
cation. Therefore, those UEs should choose their PRBs first. The variance is used in
this work to measure the variation in CQI.

Suppose there are in total
Ns = NMA,s +NRA,s (5.6)

users associated to cell s, where NMA,s is the number of MA users and NRA,s is the
number of RA user, respectively. The users are first sorted according to their service
type. For each service type, the users are again sorted according to the variance of
their CQIs. The user which has the highest variance pick the PRBs from the available
PRB set Ps, until its minimum data rate requirement Ri is met. And these PRBs are
subtracted from set Ps. After that, the user with second highest variance will pick.
This process goes on iteratively until there is no PRB left or all the users have their
minimum data rate requirements satisfied. If there are still PRBs left, those PRBs
will be assigned to the RA user in the second round. The RA users pick the PRBs
one at a time until there is no PRB left. Assuming the users are already sorted, and
the user index is in ascending order, the resource allocation algorithm is summarized

Service Priority Rate requirement Ratio
VoIP High 64 kbps 10%
Data Mid [512-2000] kbps 40%
Web Low ≥ 64 kbps 50%

Table 5.2: Different types of service
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Algorithm 2 Resource allocation algorithm

for each s ∈ [1, S] do
for each i ∈ [1, · · · , Ns] do

while R̃i < Ri & Pj 6= ∅ do
κ← arg max

κ̃∈Ps

Qi,κ̃

ai,κ ← 1
Ki ← Ki ∪ {κ}
Ps ← Ps \ {κ}
R̃i ← B

∑
κ

ai,κ · g(Qi,κ)

end while
end for
// Assign the left PRBs to RA users

while Ps 6= ∅ do
for each i ∈ [NMA,s + 1, · · · , Ns] do

κ← arg max
κ̃∈Ps

Qi,κ̃

ai,κ ← 1
Ki ← Ki ∪ {κ}
Ps ← Ps \ {κ}

end for
end while

end for

in Algorithm 2, where κ is the index of PRBs, ∅ is the empty set. The assignment
parameter ai,κ is defined as

ai,κ =

{
1 PRB κ is assigned to user i
0 otherwise

, (5.7)

which is initially assigned to be 0. The calculation of R̃i,κ utilizes the CQI to data rate
mapping function g(·). And B is the bandwidth of a PRB.

This resource allocation algorithm is used by both eNBs and HeNBs. Since the only
information the base stations need to make the resource allocation is the CQIs of their
own users, this resource allocation algorithm is completely decentralized.

5.1.2 Autonomous Tx power control

One of the most important KPI in cellular network is the overall throughput. To max-
imize the overall throughput by power control, the objective function can be written
as

Uopt = arg max
U∈USFC

∑
i

Fi(U), (5.8)

where U is the set of feasible Tx power. Clearly, finding optimal solution for this
optimization problem requires enormous effort. Moreover, the optimal solution must
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be centralized. That implies perfect communications among eNBs and HeNBs, which
can not be realized in current LTE systems. In addition, the data rate based utility
function is not the only design criterion. The utility function based on coverage is also
very important, and it is also evaluated in this work.

The conventional way to achieve interference mitigation through Tx power control
usually depends on strong assumption of availability of full knowledge of the network
or capability of the hardware, whereas the proposed CQI-based power control does not
have this kind of dependency.

Conventional power control

In [23], a distance-based power control scheme is proposed. In this scheme, the fem-
tocell Tx power is configured such that the UE at a pre-defined radius dmax would
receive on average at least the same amount of power from the strongest macrocell,
even if the macrocell signal has to go through building walls. Since this algorithm is
aiming at average performance, fast fading is ignored. Find the eNB, which has the
strongest signal at the UE as

ς = arg max
j∈SMC

Pi,j(t), (5.9)

where SMC is the set of all macrocells. And define the femtocell pathloss for radius
dmax as Li,s,max

The distance-based HeNB Tx power can be calculated as

Us,dist(t) = min

(
Uς(t)Gς(t)Li,s,max

Ls,ς(t)
, Umax

)
, ∀s ∈ SFC (5.10)

where Umax is the maximum Tx power of HeNB, Ls,ς(t) is the estimated pathloss
between eNB ς and HeNB s and SFC is the set of all femtocells..

Effectively, the Rx power of macrocell ς at the location of HeNB is estimated by

P̂s,ς(t) =
Uς(t)Gς(t)

Ls,ς(t)
, (5.11)

and used to determine the Tx power of the HeNB. The performance of this method
heavily relies on the accuracy of the pathloss. However, since the pathloss is calculated
by empirical models, they are not completely reliable.

The distance-based power control can be improved by taking one step further and re-
place the estimated Rx power at the location of HeNB by the measured one, supposing
the HeNB device is capable of doing the measurement. And the Tx power is given by

Us,meas(t) = min (Ps,ς(t)Li,s,max, Umax) , ∀s ∈ SFC, (5.12)

where Ps,ς(t) is the measured Rx power of macrocell ς at the location of HeNB. Since
the Rx power is from measurements, fast fading is taken into account. Therefore,
the performance of the measurement-based scheme is better than the distance-based
scheme.
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Static CQI-based power control

By observing the traffic model, one can find that the HeNB needs relatively small
Tx power to satisfy MA users. However, to give RA users the maximum achievable
data rate, each HeNB must transmit with much larger power and thus cause higher
interference to other users nearby. Therefore, the Tx power should be controlled in
such a manner that the HeNBs do not always try to provide maximum data rate for RA
users. More specifically, an offset value Υi,s(t) is applied on user i upon its minimum
data rate requirement. After that, the RA users can be treated as MA users.

Technically, the RA users are not really rate adaptive in this case, unless Υi,s(t)→∞.
They are only served with their minimum data rate demand, if Υi,s(t) = 0. Larger
offset data rate means the HeNB is more “selfish” to its own users and thus produces
more interference to other users. In another word, the indoor throughput is potentially
higher and the outdoor coverage is potentially poorer. A carefully chosen data rate
offset should be able to offer a good balance between overall throughput and coverage.
It is worth mentioning that Υi,s(t)→∞ does not necessarily mean transmitting with
maximum power, since the HUE may need a smaller power to reach the maximum
data rate. In this sense, even a fixed Υi,s(t) → ∞ can reduce interference, without
sacrificing any throughput, comparing to an unoptimized network.

Furthermore, since in indoor environment, multi-path components have a smaller delay
spread, the HeNB-HUE channel is assumed to be flat here. Based on this idea, a power
control algorithm using CQI as input can be derived. A desired CQI for each HUE can
be calculated with the data rate demands and available bandwidth resources. The Tx
power can be tuned according to the relationship between the desired CQI and actual
CQI. Furthermore, the data rate offset can be configured by upper layer protocols,
according to applications.

The power control algorithm is performed by each femtocell independently. At certain
time t, the total data rate demand F̃s(t) of femtocell s is calculated by summing up
the data rate demand of all its serving HUEs

F̃s(t) =

NMA,s∑
i=1

F̃i(t) +
Ns∑

i=NMA,s+1

(F̃i(t) + Υi,s(t)), (5.13)

where F̃i(t) is the data rate demand of user i. The number of PRBs required by user i
is then estimated by the proportion of this user’s data rate demand to the total data
rate demand of the femtocell

Ki(t)← d
F̃i(t)

F̃s(t)
· (KPRB −Ns + 1)e, (5.14)

where KPRB is the total number of available PRBs. The round up operation guarantees
that each user gets at least one PRB and the summation of PRBs over all the HUEs
does not exceed the total number of available PRBs. The desired bandwidth efficiency
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Algorithm 3 Power control algorithm with fixed data rate offset
for each s ∈ SFC do

for each t ∈ [tmin, tmax] do

F̃s(t)←
NMA,s∑
i=1

F̃i(t) +
Ns∑

i=NMA,s+1

(F̃i(t) + Υi,s(t))

for all HUE do
Ki(t)← d F̃i(t)

F̃s(t)
· (KPRB −Ns + 1)e

χi(t)← dη−1( F̃i(t)
B·Ki(t)

)e
if Qi(t) < χi(t) & Us(t− Tb) < Umax then

Us(t)← Us(t− Tb) + ∆U
else if Qi(t) > χi(t) & Us(t− Tb) > Umin then

Us(t)← Us(t− Tb)−∆U
else

Us(t)← Us(t− Tb)
end if

end for
end for

end for

is given by F̃i(t)
B·Ki(t)

. The desired CQI χi can be calculated with the inverse of CQI to
bandwidth efficiency mapping function as

χi(t)← dη−1(
F̃i(t)

B ·Ki(t)
)e, (5.15)

where B is the bandwidth of a PRB. After that, in each time slot, the realtime CQI is
compared to the desired CQI. If the realtime CQI is too low, the Tx power is increased
and vice versa. The whole procedure is shown in Algorithm 3.

The HUEs are usually indoor and move only with pedestrian speed. Consequently,
their CQIs vary slowly and can be perfectly predicted. Hence, after the algorithm
reaches a steady state, there will be only seldom vibrations in the Tx power. The
Tx power increment ∆U determines how fast the algorithm converges. Since CQI is
discrete valued, the variation in SINR ∆γ, which changes CQI by 1, can be calculated
from Figure 4.5. Assuming the interference stay unchanged, the CQI can be changed
by 1, if the variation in Rx power ∆P has the same value as ∆γ in dB. Considering
there are femtocells with overlapped coverage area, ∆U is set to ∆γ/2 in this work.

Dynamic CQI-based power control

The data rate offset can be empirically calibrated through simulations. Other than
using a fixed value, it can also be set according to the number of interfered users,
assuming a HeNB constantly tracks the number of users in its service range. Since
MUEs, especially the indoor MUEs are most vulnerable to interference, the data rate
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offset is set to 0, if any MUE nearby is detected. Otherwise, the data rate offset is set
as an exponential decay function to reduce interference to HUEs. This algorithm is
summarized in Algorithm 4.

Algorithm 4 Dynamic setting of data rate offset

if NMUE,s(t) > 0 then
Υi,s(t)← 0,∀i ∈ [1, · · · , Ns]

else
Υi,s(t)← ∆Υ1−NHUE,s(t),∀i ∈ [1, · · · , Ns]

end if

5.1.3 Numerical results

Simulation environment

As shown in Figure 5.5 (a), the simulation is conducted for an urban area with 19
eNBs, each serving 3 cells. The inter-site distance is 500 meters. Multiple buildings
are randomly located in the simulated area. On average, each cell has one building
with 40 apartments. The apartments are located in dual-stripe blocks as shown in
Figure 5.5 (b) [2]. 20% percent of the randomly chosen apartments are equipped
with HeNBs in the middle of the rooms. The activation rate of HeNBs is 50%. The
penetration loss is Liw = 5 dB for the inner wall and Low = 10 dB for the outer wall.
The frequency sharing scheme is partial sharing, where the eNBs have access to the
whole spectrum and the HeNBs can use only 10% of it. Some other parameters of the
eNB and HeNB are summarized in Table 5.3.

HeNB eNB
Carrier frequency 2 GHz 2GHz
Spectrum 1 MHz 10 MHz
Antenna pattern Omni-directional 3-sector
Max. Tx power 20 dBm 46 dBm
Antenna gain 5 dBi 14 dBi

Table 5.3: Simulation parameters.

User Average speed Mobility pattern
Outdoor pedestrian 1 m/s Along streets
Outdoor vehicular 10 m/s Along streets
Indoor pedestrian 1 m/s Indoor, random

Table 5.4: User mobility parameters.
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Figure 5.5: (a) Network layout with hexagonal grids. Horizontal and vertical lines
denotes streets. (b) Dual stripe model. HeNBs are located in the center of
apartments.
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eNB-indoor UE Li,j,dB = 15.3 + 37.6 log di,j + q · Liw

+Low

eNB-outdoor UE Li,j,dB = 15.3 + 37.6 log di,j
HeNB-indoor UE Li,j,dB = max(38.46 + 20 log di,j, 15.3

+37.6 log di,j) + 0.7d′i,j + q · Liw

HeNB-outdoor UE Li,j,dB = max(38.46 + 20 log di,j, 15.3
+37.6 log di,j) + 0.7d′i,j + q · Liw + Low

Table 5.5: Pathloss models.

In total 400 MUEs are simulated, with 80% of them located indoor. In addition, each
HeNB serves 2 HUEs, which are in the same apartment. Mobility models are employed
to create realistic movement patterns of the UEs. The indoor UEs can move freely
inside the apartments and outdoor UEs can only move along streets, which are laid
orthogonally on the map. The mobility parameters are given in Table 5.4.

The channel gain H is modeled as Rayleigh process, and the pathloss L is modeled as
described in Table 5.5, where d is the distance between base station and UE, d′ is the
distance between the UE and its projection on the building wall, q is the number of
inner walls separating base station and UE.

Evaluation metrics

Two KPIs are defined for evaluation, namely, average throughput and coverage in
terms of user satisfaction ratio. For the sake of simplicity, the mismatch of CQI
prediction is not considered here. Therefore, the throughput of user i is calculated as

Fi(t) =
∑
κ∈Ki

B · η (Qi,s(t, κ)) . (5.16)

The user satisfaction ratio is defined as

ηsat =
Nsat

NUE

, (5.17)

where Nsat is the number of satisfied UEs and NUE is the total number of UEs. A
user is satisfied, if its minimum data rate demand is fulfilled. Generally speaking, the
coverage KPI has a more important role in cellular networks, considering the fact that
mobile subscribers usually have more tolerance to slow connections than to being out
of service.

Simulation results

For the static CQI-based power control, data rate offset with both very high value
approaching infinity and very low value of 0 is considered. For the dynamic power
control, ∆Υ is set to 5 Mbps. For reference, the conventional measurement-based
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Figure 5.6: CDF of throughput for all HUEs

algorithm is also tested. The Rx power Ps,ς(t) is available at HeNB s. In addition,
Li,s,max is calculated with Table 5.5, which means the estimation of pathloss at HeNB is
perfect. In addition, the results of having all HeNBs transmitting with their maximum
power is shown as unoptimized results.

In Figure 5.6 and Figure 5.7, the cumulative distribution functions (CDFs) of through-
put for all HUEs and MUEs are compared, respectively. Since the probability of having
multiple HeNBs serving the same area and thus interfere with each other is small, us-
ing maximum Tx power gives higher SINR for the HUEs. Hence, it offers the best
average throughput for HUEs, as shown in Figure 5.6. However, the price is strong
interference to MUEs, which can be seen from the worst throughput CDF curve in
Figure 5.7.

The measurement-based power control (labeled as “Measure” in the figures) try to
match the Rx power of the HUE to the Rx power from the closest eNB. Therefore,
the HeNBs located at cell edges have very low Tx power, due to the large pathloss at
cell edge for eNBs. Consequently, the throughput of HUEs is worse in this case, as
depicted in Figure 5.6. However, the throughput of MUEs is higher, due to smaller
interference, as illustrated in Figure 5.7.

The two extreme data rate offsets offers the performance bound for static CQI-based
power control. For Υ = 0, HeNBs generate minimum amount of interference to MUEs,
while still guarantee that every HUEs is served with its minimum data rate demand.
Therefore, Υ = 0 leads to the lowest throughput for HUEs but highest throughput
for MUEs. In comparison, with Υ → ∞, the throughput of HUEs is increased dra-
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Figure 5.7: CDF of throughput for all MUEs

matically, and the throughput of MUEs is not affected so much. Bounded by these
two extreme cases, the throughput of dynamic CQI-based power control for HUEs is
between Υ = 0 and Υ→∞ and for MUE is almost the same as Υ = 0.

Due to the fact that the number of MUEs is generally larger than of HUEs, the
advantage in throughput for Υ → ∞ can also be observed for all UEs, as shown in
Figure 5.8. However the advantage is not so significant. Meanwhile, Υ = 0 gives much
lower average throughput and all the other schemes performs similarly.

More details can be observed from Figure 5.9, where the mean throughput among all
UEs is plotted for different data rate offset values. The measurement-based algorithm
offers almost no improvement in mean throughput, whereas the dynamic CQI-based
algorithm outperforms them both. Only with very small Υ values (Υ < 0.5 Mbps),
the static CQI-based algorithm has smaller mean throughput than the unoptimized
system. As the data rate offset increases, the mean throughput also increases until
a convergence is reached. Up to this point, the CQI-based algorithms do not show
significant improvement in throughput performance. However, the real advantage can
be seen from the coverage performance.

In Figure 5.10, the user satisfaction ratios are compared for different schemes. Only
around 92.5% of the UEs have their minimum data rate demand met. With the
conventional measurement-based algorithm, this number is increased to 93%. For
static CQI-based algorithm, the user satisfaction ratio drops while Υ increases. But
through the whole range of Υ, the overall coverage is always above 95%. Comparing to
the conventional scheme, the advantage is evident. Moreover, the dynamic algorithm
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Figure 5.8: CDF of throughput for all UEs

offers an overall coverage of around 96%, almost as high as Υ = 0. Therefore, one can
conclude that comparing to the static CQI-based algorithm, the dynamic algorithm
provides either almost the same coverage with much better throughput (for Υ = 0), or
better coverage with comparable throughput. Consider the fact that coverage is more
important in cellular networks, the dynamic algorithm is preferred.

To summarize, the conventional measurement-based algorithm relies on the HeNB’s
ability of measuring Rx power of eNB and very accurate pathloss model. Even though
these assumptions are quite strong, the improvement in performance is limited. The
CQI-based algorithms works with less assumptions and thus is easier to implement.
Still both the throughput and coverage are better. Furthermore, the dynamic algo-
rithm provides a good balance between throughput and coverage, by adapting the data
rate offset to the number of interfered UEs.
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Figure 5.9: Mean throughput for different data rate offset
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6.1 Summary

The next generation mobile cellular network aims at providing very high data rate and
ubiquitous connectivity. To achieve these goals, sophisticated network control meth-
ods are required. Since the 4th generation mobile cellular system is constituted of
many advanced techniques, 3GPP standards are established to provide unified techni-
cal specifications and thus ensure compatibility. Based on 3GPP specifications, various
strategies of wireless network control are addressed in this thesis.

As the most fundamental part of mobile networks, link level modeling of wireless chan-
nel is first investigated. Existing modeling methodologies are studied and compared.
Based on the geometry-based stochastic channel model and deterministic ray-launcher,
a semi-stochastic MIMO channel model is derived. The deterministic part of the semi-
stochastic channel model can effectively utilize geometric description of the propaga-
tion environment, whereas the stochastic part can generate enough randomness for
Monte-Carlo simulations. When comparing with real data from a measurement cam-
paign in the German city of Ilmenau, the semi-stochastic model shows better accuracy
than the WINNER model. Thus, the benefit of using environment data is proven.

Although with good description of the propagation environment, wireless channel can
be properly modeled, in reality, the BSs do not possess perfect information about the
up-to-date channel state. The most important channel state information comes from
the CQI feedback of the users. Due to the scarcity of spectrum resources, the CQI
feedback is made of quantized SINR. In the 3GPP standards, the CQI feedback for
several PRBs consists only 4 bits. Meanwhile, the SINR is always varying, because of
the movement of the users. To understand the variation of SINR, statistical properties
of SINR are presented analytically. Moreover, various prediction schemes based on
SINR are studied. Since different prediction schemes show different behavior for BSs
moving with different speed, using an approximated autocovariance function, optimal
prediction schemes can be chosen to adapt to the speed. The prediction noise can
be approximated by a Gaussian distributed noise; thereby the analytical expression of
bandwidth efficiency can be obtained.

Furthermore, HARQ is also considered in the analysis of feedback strategies. An
analytical expression of the bandwidth efficiency in the presence of HARQ is derived,
on the condition that the buffer size is large enough. The buffer size affects not
only throughput but also latency. For a larger buffer size, the throughput is larger,
however a larger latency is also to be expected. Another interesting fact is, since
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the retransmission effectively improves the effective SNR, a biased predictor is not
necessarily worse than an unbiased one. This work shows that for noisy predictor, a
small positive bias leads to improvement in bandwidth efficiency, for a large prediction
noise.

Since at the BS side, the channel state is available only in the form of CQI, net-
work control algorithms can be developed based on real time CQIs. A case study of
transmit power control for femtocells is offered in this work. As a solution to im-
prove indoor coverage, femtocells are introduced as low-power, indoor BSs. Due to
the shared frequency spectrum among femtocells and macrocells, co-channel interfer-
ence is inevitable. Conventional interference suppression methods usually require full
knowledge of the network structure or depend on the accuracy of the pathloss model.
The presented power control scheme takes only the feedback CQIs as input. By differ-
entiating service types of users and applying different QoS constraints, the transmit
power of femtocells can be managed in a self-organizing fashion. For MA users, the
Tx power is only sufficient to meet their rate demands, whereas, RA users are also
treated as MA users with an offset data rate. Furthermore, the offset data rate can
be chosen according to the number of interfered users in the vicinity of the femtocell.
The self-organizing power control does not need prior information about the network
structure and thus is easy to implement. It shows superior performance comparing to
conventional methods in both capacity and coverage.

6.2 Outlook

Due to the immensity of the knowledge about wireless networks, the studies offered in
this work are only a tip of the iceberg. It is hoped that the perspectives presented in
this work can lead to further in-depth investigations on network control strategies for
wireless networks.

Firstly, the semi-stochastic MIMO channel modeling methodology can be extended
to vehicle-to-vehicle (V2V) communications with both moving MS and BS. Different
characteristics of the V2V channels also demand stochastically generated scatterers.

Secondly, the analytical expression of bandwidth efficiency along with its association
to effective SNR and CQI can be exploited for system optimization. The bias of the
predictor and buffer size can be optimized subject to bandwidth efficiency and latency.

Finally, some more optimization work can done to the Tx power control schemes to
further improve the coverage and capacity. Due to the simplicity of this scheme, it
would be really interesting to have this algorithm implemented in real systems and
tested for the performance.
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A Multivariate Gaussian integral

Start from the well known Gaussian integral

∞∫
−∞

exp
{
−q2

}
dx = (π)

1
2 , (A.1)

it is easy to get

∞∫
−∞

· · ·
∞∫
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2

N∑
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aiq
2
i

}
dq1 · · · dqN =

(2π)
N
2

√
a1a2 · aN

, (A.2)

Denote q by a linear transformation

qi =
N∑
j=1

Bi,jxj, 1 ≤ i ≤ N (A.3)

where det(B) 6= 0. The matrix notation is given by

N∑
i=1

aiq
2
i = xTBTABx = xTCx, (A.4)

where A is a positive definite diagonal matrix. Its elements can be written as

Ai,j = aiδi,j, (A.5)

where δi,j is the Kronecker delta and

√
a1a2 · aN = (det(A))

1
2 . (A.6)

Matrix B is actually the Jacobian matrix, therefore, the following holds true [48]:

dq1 · · · dqN = | det(B)|dx1 · · · dxN . (A.7)

Moreover, the determinant of C can be calculated with

det(C) = det(BTAB) = det(B)2 det(A). (A.8)
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Substitute (A.4) and (A.7) into the left side of (A.2) results in
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Finally, with (A.8), the multivariate Gaussian integral can be derived:
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1
2 . (A.11)
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Notation

(·)∗ Complex conjugate

(·)H Hermitian transpose

(·)T Matrix transpose

J0 Zero order Bessel function of the first kind

C Set of complex numbers

E Expectation

diag Diagonal matrix

tr Matrix trace

unvec Inverse operation of vec

vec Vectorization

� Element-wise product

⊗ Kronecker product

B Bandwidth, page 44

F Throughput, page 44

G Antenna gain, page 42

K Number of subcarriers, page 9

L Number of channel taps, page 7

NRx Number of receive antennas, page 12

NTx Number of transmit antennas, page 12

Nsin Number of sinusoids, page 20

NPRB Number of PRBs, page 82

NUE Total number of UEs, page 82
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Nsat Total number of satisfied UEs, page 99

P Rx power, page 13

Pe Error probability, page 42

R Correlation function, page 8

S Number of base stations, page 89

SFC Number of femtocell base stations, page 89

SMC Number of macrocell base stations, page 89

T Symbol duration, page 7

Tb PRB duration, page 62

Ts Sampling interval, page 7

U Average Tx power, page 42

W Frequency domain additive white Gaussian Noise, page 12

X Frequency domain transmitted signal, page 10

∆f Subcarrier spacing, page 10

∆t Time difference, page 8

Φ Initial phase, page 20

Υ Offset data rate, page 95

β Calibration parameter in EESM, page 43

η Spectral efficiency, page 44

ηsat User satisfaction ratio, page 99

γ Signal to interference plus noise ratio, page 13

γe Effective signal to noise ratio, page 43

κ PRB index, page 43

Hcorr Channel impulse response matrix generated with full correlation matrix, page 23

Hf Channel frequency response matrix, page 13

Hiid Channel impulse response matrix for i.i.d. model, page 22

Hkron Channel impulse response matrix generated with the Kronecker model, page 24
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Ht Channel impulse response matrix, page 12

Hweich Channel impulse response matrix generated with the Weichselberger model,
page 25

I Identity matrix, page 33

Q Frequency domain spatial signal covariance matrix, page 33

QRx Rx spatial signal covariance matrix, page 24

QTx Tx spatial signal covariance matrix, page 24

R Correlation matrix, page 64

RH Spatial correlation matrix, page 23

RRx Rx spatial correlation matrix, page 23

RTx Tx spatial correlation matrix, page 23

URx Eigenbase of Rx spatial correlation matrix, page 24

UTx Eigenbase of Tx spatial correlation matrix, page 24

Ω Power coupling matrix, page 25

Σ Covariance matrix, page 55

r Correlation vector, page 64

w Filter vector, page 64

wf Additive white Gaussian noise vector in frequency domain, page 13

wt Additive white Gaussian noise vector, page 12

xf Transmitted signal vector in frequency domain, page 13

xt Transmitted signal vector, page 12

yf Received signal vector in frequency domain, page 13

yt Received signal vector, page 12

B Set of subcarriers in a subband, page 43

M Set of UEs, page 82

P Set of PRBs, page 82

S Set of cells, page 13

111



A Multivariate Gaussian integral

P Average Rx power, page 47

φ Angle of departure, page 27

ψ Angle of arrival, page 20

σ2 Variance, page 8

τ Delay, page 7

τmax Maximum delay spread, page 7

ε Mean squared error, page 63

Ω̃ Element-wise square root of the power coupling matrix, page 25

ξ Complex amplitude, page 7

ζ Normalized complex amplitude, page 19

a PRB assignment parameter, page 93

c Speed of light, page 9

d Distance between base station and user, page 89

fD Maximum Doppler frequency, page 8

fc Carrier frequency, page 9

h Channel impulse response, page 7

k Subcarrier index, page 10

l Discrete delay index, page 7

n Discrete time index, page 10

nRx Index of receive antenna, page 12

nTx Index of transmit antenna, page 12

nsin Index of sinusoid, page 20

rf Frequency correlation, page 11

rt Temporal correlation, page 8

t Time index, page 7

td Feedback delay, page 62

v Moving speed, page 9

x Transmitted signal, page 7

y Received signal, page 7
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