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Abstracr- Accurate hation tracking of mobde stations in 
cellular radio networks is of tremendous interest for many 
applications. In this work, we analyze the performance of a speed 
and location tracking algorithm using data from a field trial. The 
algorithm fits received signal strengths of surrounding base sta- 
tions to componding predictions. These raw location estimates, 
in GSM available each O M S ,  are subsequently smoothed by a 
model-based Kalman lilter. An essential ingredient of our method 
is to h d  suitable initial parameters. 

The method is tested with measurement data from a field 
trial by Siemens. Although the field strength prediction method 
is rather simple, the location algorithm itself yields promising 
results. Typical average deviations from the true positions were 
173.5m for indoor, 117.7111 for walking, and 104.9111 for driving 
scenarios. This shows that the method is robust against moderate 
errors in the prrdiction model and leads to good results in a real 
GSM network. 

I. INTRODUCTION 
Location dependent services, but also cell assignment and 

access control strategies for layered structures, need informa- 
tion about the position and velocity of mobiles. 

Various methods have been proposed to estimate the posi- 
tion of mobiles in cellular radio networks analyzing the radio 
signals from the base stations. This includes angle of arrival, 
time of arrival and received signal strength measurements. 
However, all measurements are subject to strong stochastic 
variations causing random deviations in the position estima- 
tion. 

Filtering the initial location estimation can help to reduce 
the location error. In [I]  Kalman filtering based on a locally 
linear model for the mobiles motion was suggested. Various 
papers extend this work by adapting the underlying motion 
model or by adding human control factors, like [2]-[4]. 

The performance of the location methods is, however, 
mostly evaluated by computer simulation. Only a few papers 
analyze the petformance of location tracking on the basis of 
real measurement data, like [SI which evaluates data collected 
during a single call. 

In this paper, we use position estimation based on signal 
strength analysis and successive Kalman filtering as proposed 
in [I]. Initially, rough location estimates are obtained by 
fitting the measured field strength pattem of some received 

base stations to a position with maximum coincidence to 
the corresponding predicted values. We improve the least 
squares estimation by adding a global path loss constant d, 
which models unpredictable attenuation by changing weather 
conditions, e.g., geometrical obstacles like walls or systematic 
inaccuracies in the predictions. In a second step, the successive 
initial guesses are smoothed by Kalman filtering. The Kalman 
filter is based on a locally linear model of a mobile's motion. 
The parameters describing the mobile's dynamic are unknown 
in advance, and are estimated within the filtering procedure. 
However, even with only a few consecutive measurements, the 
Kalman filter approach proves to be successful. 

The accuracy of the improved algorithm is verified by mea- 
surements, which have been taken by Siemens in an existing 
GSM network in a suburban area. Measurement reports were 
recorded from numerous mobiles for three different scenarios. 
The mobile was moving on streets with high (typical driving 
speed) and low speed (typical walking speed) in the driving 
and walking scenario respectively. In the indoor scenario 
the position of the mobile was kept fixed inside a building. 
The mobiles' hue positions were measured via GPS, which 
allows for creating error statistics. About loo00 measurement 
samples were recorded altogether. Funhermore, predictions for 
17 BTS's supplying the test area are available. 

Section I1 discusses the improved initial position estimation 
and its accuracy on the measured data set. Section I11 describes 
the Kalman filtering, and Section IV discusses the accuracy of 
the whole location method. Our conclusions are summarized 
in Section V. 

11. lNlTlAL POSITION ESTIMATION 

We use the "RXI,,DOWN" value to determine the field 
strength of the sewing cell and the corresponding "RXl,,.? 
values, i = 1,2, .  . . ,8 to get the field strengths of the 
neighboring cells. These values are reported to the network 
by the mobile every 480ms (cf. [6]). 

The reported field strength pattem is compared with the pre- 
dicted field strength values of the received base stations. The 
predictions are based on a semi-empirical two-dimensional 
prediction model with a resolution of 12.5m. The search area 
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scenario drive walk 
mean std max mean 

UQ 144.3 119.2 1218.6 166.8 
LSQ with d E R 185.8 184.3 1359.8 145.9 
LSQ with d 2 R 134.9 113.3 1218.6 127.7 

is restricted with help of timing advance information, which is 
known for the serving base station and reported by the mobile 
together with the field strength. With the serving base stations 
located at Bo and a timing advance value T, E {O, 1 , .  . . , 6 3 } ,  
the mobile's position can he restricted to the area 

A = { x l  Ix-Bo/ < ( T a + l + A ) 5 5 4 m ) .  ( I )  

A represents the uncertainty of the value ,T,. A value of 
A = 0.8 proved to give acceptable results without unnecessary 
computational overhead. 

In [I], a least squares estimation (LSQ) is suggested to find 
the hest approximation of the mobiles position y ( t )  at time t, 

N 

3(t) = arg min (si(x) - ri(t))', (2 )  
XE.4 

where si(x) denotes the predicted field strength of base 
station i at location x. T i ( t )  denotes the measured field 
strength of station i at time t ,  and A is the search area. 

In computer simulations it turned out that the LSQ approach 
is rather accurate (cf. [7]). However, the results of the pure 
LSQ method should be improved for accurate location tracking 
with real measurement data, as can be seen from Table I. 
Especially for indoor measurements the error is large because 
of additional shadowing by walls disregarded by the prediction 
model. Similar problems may occur for outdoor scenarios, e.g., 
because of trees, cars and obstacles unknown to the prediction 
model. 

It is reasonable to assume that the signal of each received 
base station is attenuated by the same constant d 2 0. The 
least squares approach leads to the optimization problem 

I N \ 

indoor 
std max mean std max 

81.4 688.5 365.7 110.9 1279.2 
84.8 1359.8 213.4 158.8 1381.6 
54.4 442.2 185.2 96.6 797.7 

The solution of the inner optimization problem with respect 
to d, with x fixed, is given by 

N 

By introducing the global attenuation constant d the average 
dislocation of the initial estimation + ( t )  is reduced from 
119.2m to 113.3111 in the driving scenario, and from 365.7111 to 
185.2m for indoor location (cp. Tahle I). Especially the esti- 
mation in the indoor scenario is improved by the constant d, as 

it helps to overcome the problems of the usually unpredictable 
additional attenuation by walls. 

One might argue that omitting the nonnegativity constraint 
d 2 0, and minimizing over all real d E R would even further 
improve the raw estimates from (3). However, when applying 
the unconstrained minimizations the derivation between real 
and estimated positions grew even worse for the presented 
data, as can be seen from the second row in Table I. 

In the following, attenuated LSQ estimation with d 2 0 is 
used as input for the Kalman filter, as it provides the most 
accurate results. 

111. KALMAN FlLTERING 

The Kalman filter is based on a locally linear model for 
the motion of the mobile. A description of the theoretical 
foundations can be found in [I] and [7]. The Kalman filter 
gives an optimal recursive estimator of minimal variance. 

First, we use the following stochastic model to describe the 
random nature of the measurements y ( tk )  = ( y l ( tk ) , y z ( tk ) ) .  
Let ' denote the transpose of a vector or a matrix. Define the 
four-dimensional stochastic process 

X ( t )  = (xl(t),X*(t),vl(t),Vz(t))', t E R, 

X l ( t ) , X 2 ( t )  denote the 2- and y-coordinate of a mobile's 
random position, and VI (t) ,  V*(t)  the z- and y-coordinate of 
the velocity vector at time t. Observations are taken at discrete 
time points tk  = to + A t .  k, k E No. We assume that X ( t k )  
satisfies the discrete linear recursion 

x(tk+l) = o x ( t k )  + r w(tk), k E ivo, (5) 

where o and r are the following matrices 

/I 0 A t  O \  

W ( t k )  = ( I V 1 ( t k ) ,  t i T ' ( t k ) ) ' ,  k E w0, are stochastically inde- 
pendent random errors, two-dimensional normally distributed 
with expectation 0 and covariance matrix Q = &. denoted 
by W ( t k )  - N(0,Q) .  It denotes the identity matrix of 

X ( t k )  cannot be observed directly and is subject to fur- 
ther inaccuracies by the raw position estimation procedure. 
To take these effects into account the estimated positions 

order I. 
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(b) Example of a mobile in the driving scenario. 
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Fig. 1. Comparison of the mobiles tme path ("t"). the initial position estimations ("x") and the W a n  filtered estimation (solid line). 

(y l ( tk ) ,  vl(tk))'  are modeled by independent additive random and 
errors as ~ ~ - ~ ( t ~ )  = @ c k - l ( t k - l )  9' + rQr' 

Y ( t k )  = M X ( t k )  + U & ,  k E No, (6 )  Optimal recursive estimators of minimal variance are given 

The minimum variance estimator of the state at time t k  is 
whereM=(Ayg;)  andUk-N(0 ,R) .  

with 
white Gaussian noise. The state at time tk is estimated by 

by the Kalman-Bucy filter. 

given by 
( 5 )  a d  (6) fa,.,,, a discrete linear difference 

X k ( t k )  = X c - i ( t k )  + K ( t k ) ( Y ( t k )  - MXk--l( t l ; ) ) .  (9) 
the variance minimal cpnditional expectation of X(&) given 
previous observations Y ( t k )  = (Y(to), . . . , Y ( t k ) )  as 

Covariance matrices are updated by 

Ck(tk)  = Ck-i( tk)  - K( tk )MCk- i ( tk ) ,  (10) and the predicted value at time tk as 

L - l ( t k )  = @ X k - l ( t k - l ) .  (7) where 

Corresponding covariance matrices are denoted by K ( t k )  = Ck-l ( tk)M'(MCk- l ( tk)M'  + R)-'. (11) 

Ck(tk) = C O V [ X ( t b )  I W k ) ] ,  is the Kalman gain. 
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TABLE I1 
ACCURACY ANALYSIS OF THE PRESENTED FILTERING ALGORITHM DEPICTING MEAN AND MAXIMAL LOCATION ERROR IN METERS 

With initial values X o ( t 0 )  and C o ( t 0 )  recursion (9) can 
be evaluated via (7), (P), (lo), and (11). The corresponding 
algorithm is described below in (12), updated values are 
denoted by +. Let yk denote the actual observed values. 

C = @CO’ + rqr‘ 
K = CM’(MCM’ + R)-’ 

c+ = c - KMC 
X+ =ax + K(Y - M@x)’ (12) 

x=x+ 
c=c+ 

As in [I] we choose XO = X(t0) = (yl,yz,O,O) with 
(y1,yz) being the first initial position estimation at time to. 
The iteration is started with velocity zero. As initial value for 
CO = C(t0) we use 

with R = 22000. I*. 
302 (m/sec)‘ seems to be a reasonable upper bound for the 

variance of the initial velocity of a mobile. The variance of 
the deviation between the true and the estimated position was 
estimated as 22000m2 for each coordinate. This corresponds to 
a standard deviation of approximately 150m per measurement, 
which lies in between the measured values for the walking and 
driving scenario and the value for the indoor scenario (cp. 
Table I). 

The uncertainty in the initial values causes large estimation 
errors for the first few points of the mobiles track. This reduces 
the accuracy of the whole method, especially if only a few 
consecutive measurements are available. However, the vector 
X and the matrix C are updated in each step of the recursion, 
and improve with the number of measurements. Therefor we 
propose the following method to improve the accuracy. 

First, the recursive filter algorithm is employed with the 
above described a-priori initial values. After a number of 
measurements the process is stopped and Kalman filtering is 
applied with the current estimated parameters, but with the 
data in reversed order, i.e., At < 0. After reaching the initial 
point again, an improved estimation of CO and XO is achieved. 
Finally, the filtering algorithm is started again with these initial 
values to generate the ultimate location estimation sequence. 

This method works well for both simulations and the 
measured data set as the following analysis shows. 

IV. RESULTS 

Figures I(a), l(b), I(c) and l(d) show exemplarily how 
the Kalman filter works in various situations. Especially the 
driving scenario (Figures I(a) and I(b)) indicates, that the filter 
properly models the dynamics of the mobile. In Figure l(a), 
the estimated track is shifted to the top left comer. Similar 
effects can be observed in other examples. This might be 
explained by systematic errors in the field strength predictions. 

An important question is the influence of the number of 
available raw estimates on the accuracy of the final Kalman 
filtered track. For this purpose, the sequence of measurement 
reports is split into subsequent sample blocks of length 1, 
with 1 = 1,2,4,16,32,64. The raw estimates are computed 
according to (3), and the Kalman filter is applied to the 
resulting raw sequence of length 1. 

The results of this study are represented in Table 11. Block 
lengths are referred to by NMR 1, . . ,, NMR 64. ”All” means 
that the final estimate is based on all available measurement 
data without splitting into blocks of fixed length. 

Basically, accuracy increases as the blocks grow longer. 
The number of blocks for computing the averages in Table 
11, however, varies for the different scenarios. This is because 
some of the basic measurement reports contained less than 
32 samples, so that the data could not be included in the 
evaluation with I = 32 and 1 = 64. The averages are hence 
subject to higher variation which may explain the unexpected 
large value 177.9 for the indoor scenario with NMR 64. 

A major source of deviation between the true and estimated 
positions is the relatively simple field strength prediction 
method in the present study. In Figure 2 the predictions for two 
base stations are compared to the measured field strength val- 
ues in the driving scenario. Clearly there are large deviations 
which suggest the use of a more accurate, preferably three- 
dimensional prediction model. This is particularly necessruy 
to reduce the prediction error for low signal strength. 

V. CONCLUSIONS 

The results of the presented method are quite satisfying for 
the purpose of location based services and hot spot detection 
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(a) Base station 1. 

Fig. 2. 

(bJ Base station 2 

Compziinson of the RXlev values reported by the mobiles with predicted values 

in cellular radio networks. The optimally chosen global atten- 
uation constant d and the subsequent Kalman filtering with the 
improved initial values lead to major improvements. Especially 
the error in indoor scenarios decreases with the introduction of 
the additional constant. In summay, the presented method has 
an accuracy in the range of loOm for the investigated outdoor, 
and 175m for the indoor scenario. This is much better than 
location estimation based only on the cell ID and the timing 
advance to the serving station. Further improvements are to 
be expected by more accurate prediction models. 

The used Kalman filter does significantly improve the 
position estimation. The real world examples in this paper 
show that the predicted behavior from previous computer 
simulations is accomplished. Even with a rough field strength 
prediction and only a few measurements reliable location 
tracking is possible. 
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