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Abstract—A set-membership affine projection algorithm is ap-
plied to estimate the communication channel between the wireless
sensor nodes in a general form, where the channel is modeled as a
complex matrix in the presence of additive white gaussian noise.
An efficient hybrid model for the affine projection algorithm is
briefly introduced and the problem of matrix invertibility in some
cases of the affine projection algorithm is resolved by a new
method which does not use any matrix inversion. Simulations
show good performance of our proposed algorithm in terms of
convergence speed and demonstrate reduced complexity.

I. INTRODUCTION

Wireless sensor networks (WSN) have been under special
attention by researchers and engineers due to their wide range
of applications in health, military, home, etc. Although new
technologies in the WSN electronics are developing each day,
there might be some features for sensor networks that do not
change. Some examples can be their low-cost, low-power,
small-size and rapid deployment properties. Since there are
many constraints on sensor networks, the best solutions are
the ones which can make a suitable trade-off between the
restrictions. Unlike a multiple-input multiple-output (MIMO)
system in which we can apply various techniques for esti-
mation and detection, a sensor network may fail to apply
these methods since there might not be enough computational
capacity and memory to perform those tasks, or the high power
consumption drastically reduces the life-time of the network.
This is also true for the layering structure of the network and
the protocols. For instance, many of the proposed protocols for
the traditional wireless ad hoc networks are not well suited to
the requirements and unique features of the sensor networks
[1]. Consequently, the regular channel estimation methods
are not suitable here due to their high computational loads.
For this purpose, a set of algorithms called set membership
(SM) algorithms have been proposed which can reduce the
computation load by lowering the update rates based on the
required resolution. Algorithms such as SM normalized least
mean squares (SM-NLMS) and SM recursive least squares
(SM-RLS or BEACON) have been proposed and investigated
in [2] which can estimate a matrix-based complex channel.
The two-dimensional SM affine projection (SM-AP) channel
estimation has been investigated in [3] which is for OFDM
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Fig. 1. A WSN consisting of transmitter Tx, L relays and receiver Rx.
The number of sensor nodes in the Tx, ith relay and the Rx are denoted by
Ns , Nui and Nr respectively.

systems. A MIMO channel equalization using a real-valued
SM-AP is discussed in [4]. In this article, we focus on the
channel estimation problem between the sensor nodes in a
general form using the SM-AP algorithm. The data reuse fea-
ture in AP and SM-AP results in fast convergence. Although
the idea behind the SM-AP estimation already exists [5], it is
mainly for the estimation of real-valued vector-based channel
matrices. Moreover, the algorithms generally include a sort of
matrix inversion which is not suitable here for the purpose
of WSNs when the size of matrix is large. Proposing the
matrix-based and complex-valued AP and SM-AP algorithms
are the major novelties of this article. Another novelty of this
work is proposing the finite iterative algorithm [6], which can
solve complex matrix equations with arbitrary accuracy and
fast convergence, to convert the matrix inversion process to
an iterative algorithm. Also we briefly introduce the hybrid
AP (HAP) algorithm which has a low complexity, low steady-
state error (SSE) and a fast convergence. The rest of this paper
is organized as follows: in Section II a WSN system model
is described. In Section III the proposed channel estimation
algorithm is discussed in detail and the solutions for AP and
SM-AP are derived for different cases of the problem, and
finally, the simulation results are presented in Section IV.

II. WSN SYSTEM MODEL

Figure 1 illustrates a wireless sensor network with L relay
groups between Ns transmitter nodes (Tx) and Nr receiver
nodes (Rx), where the communication channels from the Tx
to relay 1, from relay i to relay i+1, 1 ≤ i ≤ L−1, and from
relay L to the Rx are denoted by HTx→1,Hi→i+1,HL→Rx,
respectively. For each i , 1 ≤ i ≤ L , the ith relay group



consists of Nui
sensor nodes. The received and transmitted

signals by/from the ith relay are denoted by the complex
vectors ui , u′i ∈ CNui , respectively. For the sake of clarity,
each sensor node in any relay group is shown by two antennas
for transmission and reception separately. As Figure 1 depicts,
the complex signal vector s = [s11s21 . . . sNs1]T is transmitted
from the Tx to the first relay through the channel HTx→1, then
the signal is received by relay 1 as vector u1 and a signal
u′1 which contains the desired information acquired from u1

is retransmitted to the next relay group through the channel
H1→2 and the same procedure happens for other relays.
Finally, the signal is received at the destination as a complex
vector r = [r11 r21 . . . rNr1]T through HL→Rx. Assuming
an additive white Gaussian noise (AWGN) system model and
defining the integer set Fji := {i, i+1, . . . , j} ,∀i, j ∈ Z, i ≤ j,
the whole communication process described above can be
formulated as follows

u1 = HTx→1 s + nTx→1

ui+1 = Hi→i+1 u′i + ni→i+1 , ∀i ∈ FL−1
1

r = HL→Rx u′L + nL→Rx

where ui,u
′
i ∈ CNui ,∀i ∈ FL1 , HTx→1 ∈ CNu1

×Ns ,
HL→Rx ∈ CNr×NuL , Hi→i+1 ∈ CNui+1

×Nui , ∀i ∈ FL−1
1

and nTx→1 ∈ CNu1 , nL→Rx ∈ CNr , ni→i+1 ∈ CNui+1 ,
∀i ∈ FL−1

1 are the corresponding noise vectors in each step.
Depending on the type of the WSN and its configuration,
vector u′i can be a modified or amplified version of ui such
as amplify-and-forward or decode-and-forward strategies in
cooperative WSNs [7].

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

For our channel estimation problem, and independent of
the WSN’s strategy, we consider the system model for each
hop with Ns sensor nodes transmitting, and Nr sensor nodes
receiving, described by r = Hs + n, where r is the Nr × 1
received signal vector, H is the Nr × Ns complex channel
matrix, s is the Ns × 1 transmitted signal vector and n is the
Nr × 1 AWGN vector. Moreover, we assume that the channel
matrix H is constant during the transmission and reception of
K pilot vectors si,∀i ∈ FK1 , which are known to the receiver.
So at any time instant i ∈ FK1 , ri = Hsi + ni, where ri and
ni are the corresponding received and noise vectors at time
instant i and H is the matrix to be estimated.

A. Optimization

Denoting the estimated matrix at kth time-step of estimation
(k ∈ FKP ) by Hk, the objective of the AP algorithm is to

minimize ‖Hk+1 −Hk‖2F
subject to : rk−i −Hk+1sk−i = 0 ,∀i ∈ FP−1

0

where the subscript F denotes the Frobenius norm and P is the
number of data reuse. Note that the initial Hk matrix at k = P
can be set as HP = 0Nr×Ns

. For simulations, we shift the
curves by k = P to compensate for this starting point offset.
The objective above can be interpreted as keeping the new

update as close as possible to the current value while forcing
the a posteriori error to be zero. Since forcing this error to
be zero in comparison with the case that some error can be
tolerated is a more stringent constraint that has to be fulfilled
and needs more power consumption which is not desired in
a sensor network, we weaken this condition by keeping the a
posteriori error in an acceptable region rather than just zero,
based on the demanded resolution. This can be achieved by
applying vector parameters gk−i ∈ CNr×1 ,∀i ∈ FP−1

0 to our
calculations. These vectors are bounded so that the error is
limited. So the constraint for our problem can be rewritten as

rk−i −Hk+1sk−i − gk−i = 0, ∀i ∈ FP−1
0 .

Different choices for vectors gk−i , i ∈ FP−1
0 are discussed

in Subsection III-B, but for the time being, we assume that
any gk−i , i ∈ FP−1

0 is valid as long as ‖gk−i‖ is bounded
by a positive constant like γ. As we will later see, the SM
algorithm makes decision about updating based on comparing
a scalar function of an error vector with the threshold γ. To
solve the optimization problem we use the method of Lagrange
multipliers. Since the objective function includes a complex-
valued constraint in general, a suggestion is to decompose the
whole complex variables and parameters as a sum of their real
and imaginary parts. Therefore we make an equivalent version
of the objective function in which the whole parameters and
variables are real. Using the superscripts R and I for real
and imaginary parts respectively, the channel matrix can be
expressed as

Hk = HR
k + jHI

k , HR
k , HI

k ∈ RNr×Ns , ∀k ∈ FK+1
P .

By applying the same method to ‖Hk+1 − Hk‖2F and the
constraints, we deduce the following real-valued relations

‖Hk+1 −Hk‖2F = ‖HR
k+1 −HR

k ‖2F + ‖HI
k+1 −HI

k‖2F,

rRk−i−HR
k+1s

R
k−i+HI

k+1s
I
k−i−gRk−i = 0 ,∀i ∈ FP−1

0 , (1)

rIk−i−HI
k+1s

R
k−i−HR

k+1s
I
k−i−gIk−i = 0 ,∀i ∈ FP−1

0 . (2)

Now, the Lagrange function L can be defined as

L(HR
k+1,H

I
k+1,λi,µi) := tr{(HR

k+1−HR
k )(HR

k+1−HR
k )T}

+tr{(HI
k+1 −HI

k)(HI
k+1 −HI

k)T}

+

P−1∑
i=0

λT
i (r

R
k−i −HR

k+1s
R
k−i + HI

k+1s
I
k−i − gRk−i)

+

P−1∑
i=0

µT
i (r

I
k−i −HI

k+1s
R
k−i −HR

k+1s
I
k−i − gIk−i)

where tr stands for the trace function and λi,µi ∈ RNr ,∀i ∈
FP−1

0 are the vectors of Lagrange multipliers. Since at the
optimum point ∇L = 0 , the four partial derivatives should be
zero as follows

∇L =

(
∂L

∂HR
k+1

,
∂L

∂HI
k+1

,
∂L
∂λi

,
∂L
∂µi

)T

= 0 , ∀i ∈ FP−1
0 .

(3)



From the equations ∂L
∂HR

k+1

= 0 , ∂L
∂HI

k+1

= 0 in (3) we deduce

HR
k+1 = HR

k +
1

2

P−1∑
i=0

λis
R
k−i

T
+

1

2

P−1∑
i=0

µis
I
k−i

T
, (4)

HI
k+1 = HI

k −
1

2

P−1∑
i=0

λis
I
k−i

T
+

1

2

P−1∑
i=0

µis
R
k−i

T
(5)

respectively, and the last two equations ∂L
∂λi

= 0 , ∂L∂µi
= 0 in

(3) return the constraints (1) and (2). By incorporating (4) , (5)
into (1) , (2) and using the index m instead of i in (1) , (2) for
the sake of clarity, for every m ∈ FP−1

0 we obtain

rRk−m −HR
k sRk−m + HI

ks
I
k−m − gRk−m

= (
1

2

P−1∑
i=0

λis
R
k−i

T
+

1

2

P−1∑
i=0

µis
I
k−i

T
)sRk−m

−(
1

2

P−1∑
i=0

µis
R
k−i

T − 1

2

P−1∑
i=0

λis
I
k−i

T
)sIk−m

and
rIk−m −HI

ks
R
k−m −HR

k sIk−m − gIk−m

= (
1

2

P−1∑
i=0

µis
R
k−i

T − 1

2

P−1∑
i=0

λis
I
k−i

T
)sRk−m

+(
1

2

P−1∑
i=0

λis
R
k−i

T
+

1

2

P−1∑
i=0

µis
I
k−i

T
)sIk−m.

Defining three new matrices Xk, Yk and Zk as

Xk :=
1

2

P−1∑
i=0

λis
R
k−i

T
+

1

2

P−1∑
i=0

µis
I
k−i

T

Yk :=
1

2

P−1∑
i=0

µis
R
k−i

T − 1

2

P−1∑
i=0

λis
I
k−i

T

Zk := Xk + jYk,

one can prove that Hk+1 = Hk+Zk and Zksk−m = rk−m−
Hksk−m − gk−m ,∀m ∈ FP−1

0 . Now the whole P equations
in the latter relation can be cast into one equation as follows

ZkSk = Rk −HkSk −Gk = Ek −Gk (6)

where

Sk := [ sk−P+1 sk−P+2 . . . sk ] ∈CNs×P

Rk := [ rk−P+1 rk−P+2 . . . rk ] ∈CNr×P

Gk := [ gk−P+1 gk−P+2 . . . gk ] ∈CNr×P

Ek := [ εk−P+1 εk−P+2 . . . ek ] ∈CNr×P

and the vectors εk−i := rk−i −Hksk−i ,∀i ∈ FP−1
1 are the a

posteriori error vectors while ek := rk −Hksk is the current
error vector. Note that according to the objective function
defined for the AP, we have to find the matrix Zk which
has the minimum Frobenius norm among the whole set of

solutions for ZkSk = Ek −Gk in cases which the solution is
not unique. Therefore we consider several distinct cases based
on the characteristics of the matrix Sk.

1) Sk square and full rank: In this case since rank{Sk} =
Ns = P , Zk can be found uniquely by

Zk = (Ek −Gk)S−1
k .

2) Sk broad and full rank: In this case, the matrix Sk is a
broad matrix, i.e. Ns < P and has full rank of min{Ns, P} =
Ns. Thus, since rank{SkSHk } = rank{Sk} = Ns, matrix
SkS

H
k is invertible and necessarily Zk is yielded as follows

Zk = (Ek −Gk)SH
k (SkS

H
k )−1,

but using this solution for Zk results in the following equality

(Ek −Gk)SH
k (SkS

H
k )−1Sk = Ek −Gk

which is not satisfied in general case. So in this case there is
only one solution as derived above or there is not any solution.

3) Sk tall and full rank: In this case since Sk is a tall
matrix, i.e. P < Ns and has full rank of min{Ns, P} = P ,
the solution for Zk is not unique. Inevitably we need to find
the solution which has the minimum Frobenius norm. Defining
Ak := Ek −Gk and separating the real and imaginary parts
of ZkSk = Ak, we obtain two real constraints or their vector
equivalents as follows

ZRk SRk −ZIkS
I
k = AR

k ⇐⇒ vec(ZRk SRk −ZIkS
I
k) = vec(AR

k ),

ZIkS
R
k + ZRk SIk = AI

k ⇐⇒ vec(ZIkS
R
k + ZRk SIk) = vec(AI

k),

where the equivalencies above are due to the same size of
matrices on the left and right-hand sides of the equalities. Ig-
noring the subscript k for the sake of simplicity, the equivalent
statements for the constraints above in the vector form are

(SR
T⊗I)vec(ZR)−(SI

T⊗I)vec(ZI)−vec(AR) = 0, (7)

(SR
T⊗I)vec(ZI)+(SI

T⊗I)vec(ZR)−vec(AI) = 0, (8)

respectively, where ⊗ stands for Kronecker product. The new
Lagrange function W is defined as follows

W(vec(ZR),vec(ZI), ζ,η) := ‖vec(ZR)‖2 + ‖vec(ZI)‖2

+ζT((SR
T ⊗ I)vec(ZR)− (SI

T ⊗ I)vec(ZI)− vec(AR))

+ηT((SR
T ⊗ I)vec(ZI) + (SI

T ⊗ I)vec(ZR)− vec(AI))

where ζ,η ∈ RPNr are Lagrange multiplier vectors. Setting
∇W = 0 results in

∇W =

(
∂W

∂vec(ZR)
,

∂W
∂vec(ZI)

,
∂W
∂ζ

,
∂W
∂η

)T

= 0.

From the first two derivatives above we conclude

2vec(ZR) + (SR
T ⊗ I)

T
ζ + (SI

T ⊗ I)
T
η = 0, (9)

2vec(ZI)− (SI
T ⊗ I)

T
ζ + (SR

T ⊗ I)
T
η = 0. (10)

After incorporating (9) , (10) into (7) , (8) and denoting the
Hermitian transpose by superscript H, one can prove the



following relationships

vec(Z) = −1

2
(ST ⊗ I)

H
(ζ + jη),

(ST ⊗ I)(ST ⊗ I)
H
(ζ + jη) = −2vec(A).

Now since rank{(ST ⊗ I)(ST ⊗ I)
H} = rank{ST ⊗ I} =

rank{S} × rank{I} = P × Nr, the square matrix (ST ⊗
I)(ST ⊗ I)

H has full rank and consequently the unique solution
for vec(Z) is found by

vec(Z) = (ST ⊗ I)
H[

(ST ⊗ I)(ST ⊗ I)
H]−1

vec(A). (11)

Using the properties of Kronecker product a compact form for
(11) can be obtained as follows

vec(Z) =(ST ⊗ I)
H[

(ST ⊗ I)(ST ⊗ I)
H]−1

vec(A)

=(SH ⊗ I)
T[

(S⊗ I)T(SH ⊗ I)
T]−1

vec(A)

=
[[

(SH ⊗ I)(S⊗ I)
]−1

(SH ⊗ I)
]T

vec(A)

=
[
(SHS⊗ I)−1(SH ⊗ I)

]T
vec(A)

=
[[

(SHS)−1 ⊗ I
][

SH ⊗ I
]]T

vec(A)

=
[
(SHS)−1SH ⊗ I

]T
vec(A)

=(
[
(SHS)−1SH]T ⊗ I)vec(A)

=vec(A(SHS)−1SH)

and since size{Z} = size{A(SHS)−1SH} = Nr ×Ns,

Zk = (Ek −Gk)(SH
kSk)−1SH

k . (12)

4) Sk not full rank: In this case depending on values of
the matrices Sk, Ek and Gk, there may be no solution, or an
infinite number of solutions to the equation ZkSk = Ek−Gk.
For the channel estimation, we use linearly independent signal
vectors such that Sk has full rank and we set P ≤ Ns so that
the case 2 in Subsection III-A does not not happen.

B. Applying Set Membership

Analogous to [5], in this section two choices for the matrix
Gk are introduced. First defining the feasibility set Θ as

Θ :=
⋂

(r,s)∈S

{H ∈ CNr×Ns : ‖r−Hs‖max ≤
γ√
Nr
}

where S denotes the set of all possible data pairs (r, s) and
for any matrix Q, ‖Q‖max := max{|qij |} ∀i, j, the constraint
set at any time instant k, Hk, as

Hk := {H ∈ CNr×Ns : ‖rk −Hsk‖max ≤
γ√
Nr
}

and the membership set at time instant k, ψk as ψk :=
k⋂
i=1

Hi,
it is clear that we can rewrite ψk as follows

ψk =

k−P⋂
i=1

Hi
k⋂

j=k−P+1

Hj = ψ
(k−P )
k

⋂
ψ

(P )
k

where ψ
(k−P )
k ,ψ(P )

k are the intersections of first k − P
and last P constraint sets, respectively. Now according to
the objective of the SM-AP, Hk+1 should belong to ψ(P )

k

where the mathematical solutions for Hk+1 ∈ ψ(P )
k have been

obtained in previous sections in terms of the complex matrix
Gk and here in this section, an appropriate bounded matrix
Gk are proposed. Obviously, a trivial choice for this matrix is
Gk = 0Nr×P . Therefore the objective function for the SM-
AP in this case would be the same as that of the AP algorithm
but the update rate for the SM-AP is reduced by comparing a
criterion for Ek with a threshold as follows

Hk+1 =

{
Hk + ΓZk if ‖ek‖max >

γ√
Nr

;

Hk else,

where γ ∈ R+ is a positive constant and 0 < Γ ≤ 1 is the step
size which is used to make a trade-off between the convergence
speed and the steady state error. Hence by this condition, a
new update occurs only when the current error vector ek has
elements which are greater than γ√

Nr
in magnitude. Note that√

Nr works such that if ‖ek‖max ≤ γ√
Nr

then ‖ek‖ ≤ γ.
However this is a more stringent constraint on the error than
‖ek‖ ≤ γ as it imposes a single element adjustment. Another
choice is to set Gk = G′k where

G′k := [εk−P+1 εk−P+2 . . . εk−1 g′k] (13)

g′k := [g
′(k)
11 g

′(k)
21 . . . g

′(k)
Nr1]T , ek := [e

(k)
11 e

(k)
21 . . . e

(k)
Nr1]T,

g
′(k)
i1 := min

{
|e(k)
i1 |,

γ√
Nr

} e
(k)
i1

|e(k)
i1 |

,∀i ∈ FNr
1 .

This is according to the fact that since we already know
Hk ∈ Hk−i+1, setting gk−i+1 = εk−i+1 ,∀i ∈ FP2 results in

‖gk−i+1‖max = ‖rk−i+1−Hksk−i+1‖max ≤
γ√
Nr

,∀i ∈ FP2

and eventually Gk is bounded so that ‖gk−i‖ ≤ γ ,∀i ∈
FP−1

0 . This adapted strategy (see [5]) for setting G′k causes
the matrix Ek −G′k required for updating Zk to be always
like Ek −G′k = [0Nr×1 0Nr×1 . . . 0Nr×1 ek − g′k], where
the zero vectors and the zero entries of ek − g′k simplify the
subsequent calculations. Despite (13) can be interpreted as a
generalized case of the corresponding choices in [5], one may
use different criteria. For example, by defining Θ , Hk as

Θ :=
⋂

(r,s)∈S

{H ∈ CNr×Ns : ‖r−Hs‖ ≤ γ},

Hk := {H ∈ CNr×Ns : ‖rk −Hsk‖ ≤ γ}, (14)

a more flexible updating condition is obtained by

Hk+1 =

{
Hk + ΓZk if ‖ek‖ > γ;
Hk else.

Keeping gk−j = εk−j ,∀j ∈ FP−1
1 as before, in this case the

nearest boundary of Hk for the solution to lie on is obtained
by minimizing the distance function ‖gk−ek‖2 subject to the
constraint ‖gk‖2 = γ2. Again using the method of Lagrange



multipliers, since at the optimum point ∇B = 0, where

B(gk, δ) := ‖gk − ek‖2 + δ(‖gk‖2 − γ2) , γ ∈ R,

one can simply show that the closest boundary to set gk,
denoted by g∗k, is achieved when g∗k = γ ek

‖ek‖ . Figure 2
illustrates the geometrical explanation where the red point
indicates the closest point of the hyper-sphere created by

‖gk‖2 =

Nr∑
i=1

|g(k)
i1 |

2 =

Nr∑
i=1

Re{g(k)
i1 }

2
+ Im{g(k)

i1 }
2

= γ2

to the tip of the vector ek. So for the recent case we should
set Gk = G∗k where G∗k := [εk−P+1 εk−P+2 . . . εk−1γ

ek

‖ek‖ ].
By this choice, Ek −G∗k has the structure below

Ek −G∗k := [0Nr×1 0Nr×1 . . . 0Nr×1 (1− γ

‖ek‖
)ek]

where the sparsity significantly reduces the computation load
for subsequent calculations. In spite of this, since we update
only when ‖ek‖ > γ, the entries of last column vector are
zero if and only if the corresponding entries of ek are zero.
Consequently, Ek −G∗k here is not as sparse as Ek −G′k in
the previous section. Therefore, if simplicity prevails over the
SSE value, we can set Gk = G′′k , where

G′′k := [εk−P+1 εk−P+2 . . . εk−1 0Nr×1]

so that the current error vector ek is completely considered for
updating and also the computation of γ ek

‖ek‖ is not required.

C. Hybrid Affine Projection (HAP)

The idea behind HAP and its set-membership version (SM-
HAP) is to combine different AP algorithms to achieve a fast
convergence while the final misadjustment is comparable to
that of the NLMS/SM-NLMS algorithm. Thus, we can use
the AP algorithm with P > 1 for all time steps k ∈ F∆

1 where
∆ ∈ FK−1

1 and thereafter, the AP or SM-AP algorithm with
P = 1 for k ∈ FK∆+1. Examples of HAP and SM-HAP are
shown in the simulations of Section IV.

D. Resolving Matrix Inversion Issues

Since finding Zk from (6) is a special case of the equation

A1VB1 + C1WD1 + A2VB2 + C2WD2

+A3V
HB3 + C3W

HD3 + A4V
TB4 + C4W

TD4 = E

where A1,A2,C1,C2 ∈ Cm×r, B1,B2,D1,D2 ∈ Cs×n,
A3,A4,C3,C4 ∈ Cm×s, B3,B4,D3,D4 ∈ Cr×n, E ∈
Cm×r are given matrices and V,W ∈ Cr×s are the matrices
to be determined, we can use the finite iterative algorithm
proposed by [6] to find a solution for Zk with arbitrary
accuracy. The algorithm for our problem is summarized in
Algorithm 1. Note that Algorithm 1 finds only one solution
for equation ZkSk = Ek−Gk if there exists any; therefore we
should use it only for the case A where Sk is square and has
full rank. For the case 3 the algorithm can be used to find the
unique solution for the equation Z′SH

kSk = IP×P where IP×P

Im{g(k)11 }

Re{g(k)11 }

Im{g(k)Nr1
}

ek

u = ek
‖ek‖

‖ek‖ > γ
Re{g(k)i1 }

γu=g∗k
u

0

‖gk‖ = γ

γ

Fig. 2. The supposed hyper-sphere created by ‖gk‖ = γ and the current
error vector ek with ‖ek‖ > γ. The yellow vector γu is the solution to set
gk in case the nearest boundary is interested for (14).

is the identity matrix and Z′ is the matrix to be determined.
Now Zk for case 3 is found by Zk = (Ek −Gk)Z′SH

k .

Algorithm 1. Solving ZkSk = Ek −Gk

(1) Choose arbitrary matrix Ẑ0

(2) Set L0 = Ek −Gk − Ẑ0Sk and J0 = L0Sk
H

(3) If ‖L0‖2F ≤ ξ , set Zk = Ẑ0 then stop; else go to (4)
(4) Set

Ẑn+1 = Ẑn +
‖Ln‖2F
‖Jn‖2F

Jn

Ln+1 = Ek −Gk − Ẑn+1Sk

Jn+1 = Ln+1Sk
H +
‖Ln+1‖2F
‖Ln‖2F

Jn

(5) If ‖Ln+1‖2F ≤ ξ , set Zk = Ẑn+1 then stop; else let n = n+ 1 and go
to step (4).

IV. SIMULATIONS

In this section, we consider a 2-hop WSN (L = 1) with
Ns = 5 , Nu1

= 6 and Nr = 5. The channel matrices HTx→1

and H1→Rx are of size 6 × 5 and 5 × 6, respectively. The
SM-AP algorithm based on the update criterion ‖ek‖ > γ and
Gk = G′′k , along with the AP algorithm were used to estimate
the complex channel matrix H1→Rx in the second hop of the
WSN and by the aid of (12). The SNR was set to 30dB and the
original matrices H1→Rx for producing the received vectors ri
were chosen randomly with uniform distribution of phase and
amplitude in intervals (−π, π) and (0,1), respectively. Also
the pilots si were generated from a normal distribution of real
and imaginary parts, each with mean zero and variance 1. To
conform to the notation of the context, we denote the Nu1

by
Ns for this hop. Figure 3 illustrates the effect of increasing the
error bound γ on lowering the average update rate per step k
(β) for SM-AP with P = 2 and Γ = 1, where MSE is the mean
squared error. Figure 4 shows how the tradeoff between the
convergence speed and SSE can be handled by the step-size
value Γ for AP ,P = 2. Figure 5 shows the MSE performance
of different algorithms, all with the same step-size Γ = 1,
where for each SM-AP algorithm, γ2 is set to 0.02. As in
the real-valued and vector-based cases [8], the convergence
speed and the misadjustment increase in P , so that the MSE of
corresponding algorithms with larger P decline faster than that
of the algorithms with lower P , at cost of a higher SSE. Note
that the AP and SM-AP algorithms with P = 1 are the same as
the NLMS and SM-NLMS algorithms, respectively. Therefore,
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Fig. 3. The effect of increasing γ on β and MSE of SM-AP ,P = 2 , Γ = 1.
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Fig. 4. The trade-off between the SSE and convergence speed for AP ,P = 2.

as expected, our proposed algorithm converges faster than the
NLMS/SM-NLMS algorithms. The most important conclusion
is that we can achieve a performance from the SM-AP which is
very similar to the corresponding AP algorithm, but with much
less computational complexity due to the systematic matrix
sparsity (Ek −G′′k) and the selective updates (‖ek‖ > γ). In
Figure 6, using Γ = 1 for all algorithms, the AP ,P = 4
algorithm with and without using Algorithm 1 were simulated
where α is the average number of loops in Algorithm 1 per step
k in our proposed algorithm and ξ = 10−10. The similarity
of these two curves shows that the matrix inversion process
was successfully replaced by Algorithm 1 with a reasonable
α value. Note that the HAP (combination of AP ,P = 4
and AP ,P = 1) and SM-HAP (combination of AP ,P = 4
and SM-AP ,P = 1) algorithms with ∆ = 20 in Figure 6
have both of the advantages of AP and NLMS/SM-NLMS
algorithms, i.e., fast convergence and low SSE. Moreover, com-
pared to the pure AP algorithms (here AP ,P = 4), they are
simpler. In practice, finding the suitable ∆ value is outside the
scope of this article and can be a topic of future work.

V. CONCLUSIONS

An SM channel estimation algorithm based on AP was
proposed to estimate the complex channels in a WSN. The
proposed algorithm is able to estimate any channel modeled
as a complex matrix in the presence of AWGN, as opposed to
the conventional real-valued and vector-based investigations
([5],[8]) using SM-AP. The matrix-sparsity feature and the
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Fig. 5. MSE performance of AP and SM-AP with γ2 = 0.02 , Γ = 1.
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Fig. 6. The effectiveness of using Algorithm 1 as a substitution for the matrix
inversion process (SH

kSk)−1 and the MSE performance of HAP and SM-
HAP both with ∆ = 20 compared with the regular AP channel estimation
algorithms. For all algorithms in this figure, we set Γ = 1.

selective update property in SM-AP can significantly reduce
the complexity. Moreover, we showed that the matrix inversion
process can be efficiently converted to an iterative algorithm
[6] when the inversion complexity is high for the WSN.
Similar to the real-valued cases, the convergence speed and
the misadjustment increase in the data reuse number P .
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