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Abstract—In this paper, we address the optimal power al-
location problem for a distributed passive radar system, where
occasional node failures are taken into account. The goal of the
network is to provide a reliable estimation from a target signal,
by collecting and combining the individual observations from the
network in a centralized node. In this regard, a minimum mean
squared error (MMSE) problem is formulated for unbiased class
of estimators, where a stochastical model regarding sensor failure
is incorporated. As it is shown, the Karush Kuhn Tucker (KKT)
conditions of optimality result in a solution algorithm with a
water-filling (WF) structure, which provides an analytic optimal
solution. In the end, numerical simulations illustrate the effect of
the different network parameters on the resulting performance.

I. INTRODUCTION

Sensor networks are nowadays more and more applied in
various fields. Their importance is growing since the tech-
nological proceedings permit the development of evermore
smaller sized sensor nodes (SNs). A decreased size of SNs
enables in turn the realization of high-density sensor networks
with a large number of nodes. This is associated with more
demand for electrical energy, which is consumed by all SNs.
In this way, a smart power allocation in sensor networks
receives more attention than ever. Many different approaches
are proposed by scientists for special use cases. For the
‘IceCube Neutrino Observatory’, see [1], the publications [2]
and [3] provide an optimal solution for the power allocation
problem in closed-form. This solution is afterwards extended
with a fast algorithm in [4]. Benefiting from the obtained
power optimization mechanisms, the work in [5] investigates
the life-time maximization problem in a passive distributed
radar system. In case of active radars, the power allocation in
sensor networks is investigated for the region of high signal-
to-noise ratio in [6] and then in [7], for the general noise
conditions. Other approaches like [8] explicitly try to maximize
the lifetime of a battery powered sensor network while in [9]
the complexity of algorithms for an optimal sensor selection is
studied. Other than the limited power consumption capability,
the small and inexpensive nature of SNs leads to an occa-
sional faulty behavior, resulting from variety of issues, e.g.,
synchronization failure, power limits, hardware or software
failures [10]. Power adjustment, among other techniques, is
considered to tackle the degradation resulting from faulty SN
behavior, see [11], [12] and the references therein. In this
context, two approaches are common. In the first approach,
the failed sensors should be detected, and excluded from the
network function. This approach is addressed in [13] using
the prior topological network knowledge, and in [10], via

smart monitoring of the reported network measurements. In
the second approach, the network performance is optimized
in connection to a certain application, by incorporating the
statistics of SN failure. Good examples of this approach are the
works in [14], [15] which propose resilient routing strategies
in the presence of occasional SN failure.

Contribution: In this work, we extend the power allocation
algorithm in [2], addressing the distributed passive radar
applications, into a scenario where statistics of occasional
failure of SNs are taken into account. In the first step, a
system model is defined where a probabilistic approach for
the sensor failure is incorporated. Afterwards, an MMSE-
based optimization is formulated, where both individual and
collective power consumption of the SNs are limited. It is
then shown that the KKT conditions of optimality result in
a solution algorithm with a WF structure, which provides
an analytic optimal solution. Numerical simulations illustrate
the effect of the different system parameters on the resulting
performance.

II. SYSTEM MODEL

In this work we investigate a network of K amplify-and-
forward (AF) passive sensor nodes, cooperating to achieve
a single global observation via a fusion center (FC), see
Fig 1. Both communication and sensing channels (frequency-
flat fading) are assumed to be wireless and static during the
observation process. The final goal of each observation is to
classify (or detect) a target signal r ∈ C. Each observation
can be segmented into three parts: sensing, communication,
and information fusion. The detailed function of each SN is
discussed in [2, Section II].

A. Operation of SNs

If a target signal r ∈ C is present, each SN receives and
successfully amplifies the incoming signal using an amplifica-
tion coefficient uk ∈ C, with probability ζk. The availability
probability, i.e., ζ, is introduced to describe the likeliness that
a SN is available and operating in accordance to its assumed
function (not defect). Furthermore, we consider two kinds of
possible scenarios in case of a defect SN. Firstly, the scenario
where the sensor is broken or asleep, and hence has no effect
in the communication process to the FC, and secondly, the
scenario where a SN is active but providing a faulty operation,
due to software or hardware error. The communication with FC
is performed by using orthogonal waveforms for each SN so



Fig. 1: Signal flow at the defined sensor network consisting of a target
signal, K sensor nodes (S1 · · · SK ), and a fusion center. bk and dk
describe the possible faulty sensor behavior, see Table I. Detailed
explanation is given in Section II.

that the data from different SNs can be separated and processed
in FC. The process of each SN can be hence described as

xk := ak (rgk +mk)uk + (1− ak)bkwk︸ ︷︷ ︸
=:dk

, k ∈ FK , (1)

and

Xk := E{|xk|2}, R := E{|r|2}, (2)

where E{·} represents mathematical expectation, and FK rep-
resents the index set of al sensor nodes. The sensing channel
coefficient, the transmit signal from the SN with index k and
its power are respectively denoted by gk ∈ C, xk ∈ C and Xk.
The availability factor, i.e., ak ∈ {0, 1}, where E{ak} = ζk,
determines if a SN is faulty, i.e., ak = 0, or available, i.e.,
ak = 1. Furthermore, the factor bk ∈ {0, 1}, E{bk} = γk,
determines if a faulty sensor is inactive or asleep, bk = 0,
or is providing a faulty signal, bk = 1. As it can be observed
from (1), the transmitted signal from a sensor can be simplified
to (rgk +mk)uk, for a correct SN operation, and into bkwk
for faulty SN operation, where bk represents the type of sensor
failure and wk is the zero-mean faulty signal transmission with
variance Wk. The additive white Gaussian noise (AWGN) on
the sensing process and its variance are respectively denoted
as mk ∈ C and Mk. Furthermore, it is assumed that the
power consumption of each SN may not exceed a certain limit,
namely Pk, where the total average power consumption of the
network is limited by Ptot:

Xk ≤ Pk, k ∈ FK ,
∑
k∈FK

Xk ≤ Ptot. (3)

B. Fusion Center

The transmitted signal from each SN passes through the
communication channel, with coefficient hk ∈ C, and arrives
at the FC combined with an AWGN component nk ∈ C, with
variance Nk. A linear combination rule with weights vk ∈ C
is then applied at the FC to achieve an estimation, r̃, from the
observed target signal. This is described as

yk := (hkxk + nk) vk, (4)

TABLE I: Used symbols and notations

Notation Description
K number of all SNs
r, R target (reference) signal and its power
r̃ the estimate of r

gk, hk complex-valued sensing and communication channel coefficients
mk, nk complex-valued zero-mean AWGN at each SN and at FC
Mk , Nk variances of mk and nk

uk, vk complex-valued amplification factors and fusion weights
Xk communication power of kth SN
Pk maximum allowed individual SN power
Ptot maximum allowed total network power
ak, ζk coefficient representing SN correct behavior, and its expected value
bk, γk coefficient representing the type of SN failure and its expected value
wk,Wk possible faulty signal transmission and its variance
dk, Dk combined faulty signal transmission and its variance
FK the index-set of all K nodes

and results in

r̃ :=
∑
k∈FK

yk = r
∑
k∈FK

akgkukhkvk

+
∑
k∈FK

(akmkukhk + nk + dkhk) vk. (5)

where r̃ represents the estimated target signal at the fusion
center.

C. Remarks

In the present work, we assume the availability of per-
fect channel information for both sensing and communication
channels. Furthermore, it is assumed that the network sensor
failures follow the defined model with a known statistics, i.e.,
ζk, γk,Wk are known. Such statistics usually follow a Markov
chain model, in which the values of sensor failure probability
can be updated in every observation, taking into account the
validity of network measurements in different nodes, see [10],
[16]. On the other hand, in general, it is rather difficult to
estimate the sensing channel in an accurate way unless the
channel has a highly stationary nature, see, e.g., [1]. Hence,
for scenarios where the sensing channel is not stationary, or the
statistics regarding node failure is not tractable, the results of
this paper can be treated as theoretical limits. In the following
parts of this paper, we aim at providing an MMSE-based
design of the system parameters, focusing on the unbiased
class of estimators. Table I presents the used notations for
different signals and system parameters.

III. MMSE DESIGN OF NETWORK PARAMETERS UNDER
OCCASIONAL SENSOR NODE FAILURES

In this section we propose an MMSE design of the network
parameters for unbiased class of estimators. The statistics of
the SN failure are taken into account, as defined in Section
II. In the first step, we observe that the unbiased estimation
property can be written as

E

{∑
k∈FK

akgkukhkvk

}
=
∑
k∈FK

E {ak} gkukhkvk

=
∑
k∈FK

ζkgkukhkvk = 1, (6)



using identity (5), and the the fact that mk, nk, and wk are zero
mean. Subsequently, the mean squared error of the estimation
can be written as

V : = E{|r̃ − r|2}

= E

{∣∣∣∣∣− r + r
∑
k∈FK

akgkukhkvk

+
∑
k∈FK

(akmkukhk + dkhk + nk) vk

∣∣∣∣∣
2}

= E

{∣∣∣∣∣r ∑
k∈FK

(ak − ζk)gkukhkvk

+
∑
k∈FK

(akmkukhk + dkhk + nk) vk

∣∣∣∣∣
2}
, (7)

where V represents the estimation mean squared error (MSE).
By exploiting the fact that the elements of noise, target signal,
and the sensor failure coefficients are mutually independent,
the formulated MSE can be simplified as

V =R
∑
k∈FK

ζk(1− ζk)|gkhk|2|ukvk|2

+
∑
k∈FK

|vk|2
(
ζkMk|ukhk|2 +Nk +Dk|hk|2

)
=
∑
k∈FK

|ukvk|2
(
Rζk(1− ζk)|gkhk|2 + ζkMk|hk|2

)
+ |vk|2

(
Nk +Dk|hk|2

)
, (8)

where Dk = γk(1 − ζk)Wk. The identity (8) provides an ex-
plicit expression of our optimization objective, i.e., estimation
MSE, in terms of the adjustable network parameters uk and vk.
Furthermore, the individual and collective power consumption
constraints, see (3), can be respectively formulated as

Xk ≤ Pk ⇔
ζk(R|gk|2 +Mk)|uk|2 +Dk ≤ Pk, (9)

and ∑
k∈FK

Xk ≤ Ptot ⇔∑
k∈FK

ζk(R|gk|2 +Mk)|uk|2 +Dk ≤ Ptot. (10)

As a result of the above analysis, the MSE minimization
problem can be formulated as

min
uk,vk, ∀k

V (11a)

s.t. (6), (9), (10), (11b)

where (6), (9), (10) respectively describe the unbiased esti-
mation constraint, and the individual and total network power
constraint. The following lemma provides important informa-
tion on the phase of our system parameters in the optimum
point:

Lemma 1: For any optimal choice of system parameters,
uk, vk,∀k ∈ FK , the following parameter update is feasible

and does not degrade (increase) the objective value in (11a):

∀k ∈ Fk :

vk,new := |vk|
(gkhk)

∗

|gkhk|
(∑

k∈FK
|ζkgkhkukvk|

) , uk,new := |uk|,

(12)

where (·)∗ represents conjugation.

Proof: It is clear that (11) does not violate the power
constraints (9) and (10) as the absolute value of amplification
factor uk and consequently Xk are kept constant. Furthermore
it is easily verified that the unbiased condition (6) still holds:∑

k∈FK

ζkgkhkuk,newvk,new =

∑
k∈FK

|ζkgkhkukvk|∑
k∈FK

|ζkgkhkukvk|
= 1.

(13)

On the other hand, due to (6) and the triangular inequality we
have: ∑

k∈FK

|ζkgkhkukvk| ≥
∑
k∈FK

ζkgkhkukvk = 1, (14)

which shows that the variable update (12) does not increase the
norms of vk and uk and hence does not increase the objective
value (8).

The above lemma shows that the real-valued assumption
for uk, k ∈ FK does not reduce the optimality. Furthermore,
it provides us with an optimal choice of ∠vk and simplifies
our optimization problem into finding |uk|, |vk|, k ∈ FK

uk ∈ R+, vk = |vk|∠ (gkhk)
∗
, (15)

where ∠(·) represents the phase. In the following parts of this
section, we aim at providing an analytical solution to (11).
In the first step, we recognize that the objective, as well as
the constraints in (11) are separately convex (and not jointly
convex) with respect to uk and vk. Furthermore, the defined
power constraints in (9) and (10) are invariant to the choice
of vk. Hence, for any arbitrary value of uk which satisfies the
power constraints (9) and (10), the optimal vk can be found
as

min
vk, k∈FK

V (16a)

s.t.
∑
k∈FK

ζkgkukhkvk = 1, (16b)

where V is formulated in (8). Note that due to the convexity of
(16), the optimal solution can be obtained by constructing the
Lagrangian function and locating the corresponding stationary
points, see [17]. The corresponding Lagrangian function to
(16) can be hence formulated as

L (|vk|, λ) =
∑
k∈FK

|ukvk|2
(
Rζk(1− ζk)|gkhk|2 + ζkMk|hk|2

)
+ |vk|2

(
Nk +Dk|hk|2

)
+ λ

(
1−

∑
k∈FK

ζk|gkhk| · uk · |vk|

)
. (17)



By putting the derivative of (17) to zero, and following the
similar procedure as [2, equation 19-21], we obtain

λ = 2V,

|vk| =
ζkuk|hkgk|V

u2
kζk|hk|2

(
Mk +R(1− ζk)|gk|2

)
+N +D|hk|2

, (18)

and

V =

( ∑
k∈FK

ũkζ
2
k

ũk
( ζkMk

|gk|2
+Rζk(1− ζk)︸ ︷︷ ︸

=:αk

)
+

(Nk +Dk|hk|2)
|gkhk|2︸ ︷︷ ︸
=:βk

)−1

(19)

where ũk := u2k, and the constants αk and βk are defined
in (19). Note that the identity (19) describes the minimum
obtainable MSE value for a given set of uk, when vk, k ∈ FK
are optimally chosen with unbiased estimation constraint, see
(6). The optimal uk can be subsequently obtained via the
optimization problem

min
ũk, k∈FK

−
∑
k∈FK

ζ2k
ũk

ũkαk + βk
(20a)

s.t.
∑
k∈FK

ckũk ≤ Utot, (20b)

ckũk ≤ Uk, ũk ≥ 0, k ∈ FK , (20c)

where the ck := ζk(R|gk|2 +Mk) and Uk := Pk − Dk and
Utot := Ptot−

∑
k∈FK

Dk, see (9), (10). As it can be observed,
the defined problem in (20) is a convex optimization problem,
due to the convexity of the objective and the affine nature
of its constraints over ũk. As a result, the well known KKT
conditions of optimality, provide a globally optimal solution,
see [17], [18]. The corresponding Lagrangian function for (20)
can be hence formulated as

L (ũk, λ, τk, %k) := −τkũk −
∑
k∈FK

ζ2k
ũk

ũkαk + βk

+ λ

(
−Utot +

∑
k∈FK

ckũk

)
+
∑
k∈FK

%k(ckũk − Uk), (21)

where λ, τk, and %k represent slack variables. The KKT
optimality conditions can be subsequently expressed as

%?k ≥ 0, k ∈ FK , (22a)
τ?k ≥ 0, k ∈ FK , (22b)
λ? ≥ 0, k ∈ FK , (22c)

τ?k ũk
? = 0, k ∈ FK , (22d)

%k(ckũk
? − Uk) = 0, k ∈ FK , (22e)

λ

(
−Utot +

∑
k∈FK

ckũk
?

)
= 0, (22f)

0 ≤ ũk? ≤ UK/ck, k ∈ FK , (22g)∑
k∈FK

ckũk
? ≤ Utot, (22h)

and

∂

∂ũk
L
(
ũk

?, λ?, τ?k , %
?
k

)
= 0 ⇔

ck(λ
? + %?k)− τ?k =

ζ2kβk
(ũk

?αk + βk)2
⇔

λ? =
τ?k
ck
− %?k + Jk(ũk

?), (22i)

where Jk(ũk) :=
ζ2kβk/ck

(ũkαk+βk)2
, and (·)? indicates optimality. In

the following lemma, we provide a few observations on the
conditions (22a)-(22i) which lead us to the final solution.

Lemma 2: The following conditional arguments hold at the
optimality:

ũk
? = 0 ⇔ λ? ≥ Jk(0), (23a)

ũk
? = Uk/ck ⇔ λ? ≤ Jk(Uk/ck), (23b)

0 < ũk
? < Uk/ck ⇒ λ? = Jk(ũk

?). (23c)

In order to emphasize the special role of λ? in (22a)-(22i)
we name it as water-level hereinafter. Furthermore, we name
the SN indices for which ũk

? = 0, ũk? = Uk/ck, and
0 < ũk

? < Uk/ck, respectively as K0, Ksat, and K.

Proof: If ũk? = 0, then we have %?k = 0 due to (22e) and
τ?k ≥ 0 due to (22b). This concludes λ? ≥ Jk(0) according to
(22i). Furthermore, if ũk? 6= 0, together with (22g) it results in
ũk

? > 0. This results in τ?k = 0, due to (22d) and subsequently
λ?k ≤ Jk(ũk

?) < Jk(0). This concludes the conditional
argument in (23a). The proof to (23b) is similar to that of
(23a), by exchanging the role of (22a) with (22b) and the role
of (22d) with (22e). In the case where 0 < ũk

? < Uk/ck, we
have %?k = 0 and τ?k = 0, from (22d) and (22e). This readily
results in λ? = Jk(ũk

?) from (22i).

Lemma 3: The constraint on total network power consump-
tion, i.e., (20b), is tight in the optimality, unless we have∑
k∈FK

Pk < Ptot, in which case we have ũk? = Uk/ck, k ∈
FK .

Proof: If (20b) is not tight in the optimum point, then
we have λ? = 0, due to (22f). Hence, due to (23b), we
have ũk

? = Uk/ck, which corresponds to maximum power
consumption at each node. The latest statement results in∑
k∈FK

Pk < Ptot when (20b) is not tight. Moreover, it is clear
that if

∑
k∈FK

Pk < Ptot, the total network consumed power
may never reach Ptot, which concludes the proof.

The importance of Lemma 2, in connection to Lemma 3,
lies in the fact that it defines clear borders, on how the water-
level, i.e., value of λ?, is related to the classification of the
SNs into the sets K0,Ksat, and K. As a result, for a correct
classification of the nodes, the water-level is positioned such
that

max
k∈K0

{
Jk(0)

}
≤ λ? ≤ min

k∈Ksat

{
Jk(Uk/ck)

}
. (24)

As it reasonably arises, our solution strategy is to choose λ? as
a search variable, and use the results of Lemma 2 to identify
the correct status for all SNs. By obtaining the defined borders
in (23a) and (23b) and sorting them as an increasing sequence,
see Fig. 2, we obtain 2K + 1 incremental regions to look
for the optimal water-level value. Nevertheless, in order to
construct our search procedure, we still need an explicit criteria



2K+1 incremental regions 

Fig. 2: We obtain 2K + 1 incremental regions in or-
der to search for the value of water-level, i.e., λ?, where
b1 ≤ · · · ≤ b2K ← sort {Jk(0), Jk(Uk/ck), ∀k ∈ FK}.

to determine if a value of λ? fits into a selected region. By
exploiting (23c) we have

ũk
? =

ζk
αk

√
βk/ck
λ?

− βk
αk
, k ∈ K, (25)

which together with Lemma 3 and (10) results in

λ? =

(
Ptot −

∑
K0∪KDk −

∑
Ksat

Pk +
∑

K
βkck
αk∑

K
ζk
√
βkck
αk

)−2
.

(26)

Note that the obtained identity (26) can act as a test for
an assumed region of water-level. This stems from the fact
that an assumed region of λ?, see Fig. 2, results in a unique
classification of SNs into the sets K0,Ksat, and Kact. As the
set membership of all SNs are identified, the exact value of
λ? can be calculated from (26), which shows if the assumed
region of the water-level is accurate. Algorithm 1 defines the
detailed procedure to reach the optimal classification of the
nodes, and consequently the optimal values for uk and vk.

A. Algorithm description

The procedure in Algorithm 1 is based on a bi-section
search on the obtained incremental regions for the position
of λ?, see Fig. 2. For any selected region, the correct status
of all nodes are determined according to Lemma 2. On the
other hand, for the obtained status of SNs we achieve the
corresponding value of water-level, i.e., λ?, via (26) which
indicates whether the selected region is correct, too big or too
small. The number of required iterations for obtaining the cor-
rect region is upper-bounded by log2 (2K + 1)+ 1, following
the bi-section search steps. At the end, the optimal value of
water-level, along with the optimal transmit power values and
the subsets K,K0 and Ksat are determined. Optimal values
for uk and vk can be respectively obtained as u?k =

√
ũk

?,
considering (15), and via (18) and (19).

IV. SIMULATION RESULTS

In this part we investigate the performance of the defined
system via numerical simulations. We simulate a network
with K = 300 SNs, where all sensing and communication
channels are zero-mean and follow a Gaussian distribution
with variance σ2

g and σ2
h, respectively. We assume that avail-

ability probabilities, ζk, are randomly distributed in the range
[ζmax,k, 1] where γk values are equally distributed between
[0, 1]. Unless stated otherwise, the given values in Table 2
are used as the simulated network parameters. For each set of
channel realizations, i.e, hk, gk,∀k ∈ FK , 1000 realizations
of r, nk,mk, wk, ak, bk, ∀k ∈ FK are generated, following
the defined statistics. The resulting network performance is

TABLE II: Reference simulation parameters

K R Mk Nk Wk ζmin,k σ2
g σ2

h Pk Ptot

300 1 1 1 0.2 0.5 1 1 1 60

then averaged over 10000 channel realizations. In Fig. 3,
the performance of the proposed Algorithm 1, in terms of
estimation MSE, is compared to an optimal power allocation
scheme in which the occasional SN failures are not taken into
account [2]. The curves with ’Ref’ legend, represent a curve
following the reference values in Table II. For each of the
other curves, the used parameters are similar to that of the
reference curve, with the exception of the parameters specified
in the legend. For both figures, dashed lines represent the
performance of the algorithm in [2], where solid lines represent
the performance result of the Algorithm 1. It is observed
that the proposed robust algorithm consistently outperforms
the optimal power allocation without failure considerations.
Furthermore, the obtained performance gain increases, as the
availability probability is reduced. As expected, we observe
that the resulting MSE is increased for higher noise level,
higher target signal power, as well as higher power of the
faulty signal at the SNs (and vice versa). Note that the extreme
point where ζmax,k = 1, results in ζk = 1, ∀k ∈ FK , where
ζmax,k = 0 means that the values of ζk, ∀k ∈ FK are randomly
taken from the region [0, 1]. In Fig. 4, the target signal to error
power ratio (SER), i.e., RV −1, is plotted with respect to the
different values of target signal power, R. Different curves
represent different scenarios of noise (Mk = Nk), maximum
individual transmit power (Pk), and Wk and ζk values. While
Fig. 3 shows an increase in the estimation MSE when R is
increased, it is shown that the value of SER is increasing with
R if the proposed robust design is applied. Furthermore, an
increasing gain is observed compared to the non-robust design,
as the target signal becomes more powerful. It is expected,
since for high values of R, the value of MSE is dominated
with the R-dependent mismatch, see first part in (7) or (8),
which should be correctly addressed via a design with SN-
failure awareness.

V. CONCLUSION

Small and inexpensive nature of the sensor nodes allow for
a dense and distributed deployment of sensors, which serves
best for many applications. At the same time, it rises issues of
smart energy management, and dealing with occasional sensor
failures. In this paper, we addressed the problem of optimal
power allocation for a distributed passive radar system, under
a known statistics of noise and sensor failure. An optimal
MMSE-based solution is presented for unbiased class of esti-
mators, applying the known KKT conditions of optimality. As
it is expected, numerical simulations show that the gain of the
proposed algorithm is significant for a network with high node
failure probability, given that the statistics of node failure are
known.
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[7] G. Alirezaei, O. Taghizadeh, and R. Mathar, “Optimum power allocation
in sensor networks for active radar applications,” Wireless Communica-
tions, IEEE Transactions on, 2015.

[8] Q. Dong, “Maximizing system lifetime in wireless sensor networks,” in
Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on. IEEE, 2005, pp. 13–19.

[9] F. Bian, D. Kempe, and R. Govindan, “Utility based sensor selection,”
in Proceedings of the 5th international conference on Information
processing in sensor networks. ACM, 2006, pp. 11–18.

[10] S. Guo, H. Zhang, Z. Zhong, J. Chen, Q. Cao, and T. He, “Detecting
faulty nodes with data errors for wireless sensor networks,” ACM
Transactions on Sensor Networks (TOSN), 2014.

[11] M. Younis, I. F. Senturk, K. Akkaya, S. Lee, and F. Senel, “Topology
management techniques for tolerating node failures in wireless sensor
networks: A survey,” Computer Networks, 2014.

[12] H. Alwan and A. Agarwal, “A survey on fault tolerant routing tech-
niques in wireless sensor networks,” in Sensor Technologies and Appli-
cations, 2009. SENSORCOMM’09. Third International Conference on.
IEEE, 2009.

[13] J. Staddon, D. Balfanz, and G. Durfee, “Efficient tracing of failed
nodes in sensor networks,” in Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, ser. WSNA
’02. New York, NY, USA: ACM, 2002.

[14] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” SIG-
MOBILE Mob. Comput. Commun. Rev., Oct. 2001.

[15] J. Ben-Othman and B. Yahya, “Energy efficient and qos based routing
protocol for wireless sensor networks,” Journal of Parallel and Dis-
tributed Computing, 2010.

[16] A. Seyedi and B. Sikdar, “Modeling and analysis of energy harvesting
nodes in wireless sensor networks,” in Communication, Control, and
Computing, 2008 46th Annual Allerton Conference on. IEEE, 2008.

[17] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[18] O. Taghizadeh, G. Alirezaei, and R. Mathar, “Optimal energy efficient
design for passive distributed radar systems,” in IEEE ICC 2015,
London, United Kingdom.


