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Abstract—The power consumption of sensors is a crucial
point for developing large-scale sensor networks nowadays. Many
methods are proposed in the literature in order to optimize the
power allocation to the sensor nodes under several constraints
and different system aspects. In the present publication, we
present a uniform framework to enable the comparison of
different power allocation methods within the same scenario.
Five state-of-the-art optimization techniques are discussed and
their performance is compared based on simulation results. Since
the system performance is a function of the service lifetime,
power consumption, parameter limitations and system reliability,
particular scenarios are considered in order to obtain meaningful
results for the sensitivity of all five optimization strategies.

Index Terms—Non-convex optimization; lifetime maximiza-
tion; passive radar; distributed sensing;

I. INTRODUCTION

The fast rise of 5th generation wireless systems (5G) pushes
massively the development of sensor networks for various
applications. In most of these applications, the sensor nodes
(SNs) are used for sensing the environment and monitoring
of targets. These tasks are performed independently and in a
distributed fashion by the SNs, which are rather weak in their
abilities, e.g., poor signal processing units, low signal-to-noise
ratio (SNR) regions for data transmission, and limited power
supplies or non-renewable energy sources. The bottleneck of
such networks, especially when the number of SNs is huge
and the size of each SN is tiny, is the limited service lifetime.
In order to prolong the lifetime, two different strategies are
pursued by the scientists. The first strategy is to minimize
the power consumption of each SN by smart hardware im-
plementations while the second one is to minimize the power
consumption or to maximize the lifetime of the whole network
by performing intelligent power optimization techniques. In
general, both strategies benefit from each other and are thus
conclusively justified for common applications. Since the first
strategy is specific for a single SN, a comparison of different
hardware implementations is less difficult compared to the
second strategy in which all SNs with many system parameters
are involved. These system parameters are usually scenario
dependent and hence can influence the system performance
massively. In addition, a comparison in real scenarios is further
exacerbated, since the important parameters are often random,
e.g., the position of the distributed SNs, the distances between
the SNs and the moving targets, the fluctuation of noise and
channel realizations, and so on. Hence, reliable frameworks

for comparing different methods of power minimization or
lifetime maximization techniques are rarely developed and
seldom proposed by scientists. We aim to close this gap by
establishing a solid framework in the present work, in order to
enable a fair assessment of different optimization techniques.

In practice, the mostly engaged power allocation technique
is the uniform scheme such that all SNs are allocated with
equal power. As an example, we can mention the neutrino tele-
scope ‘IceCube Neutrino Observatory’ at the Amundsen-Scott
South Pole Station [1] in Antarctica, where a network with
over 5000 nodes is implemented. The uniform allocation of
power is the simplest method, since neither a channel state in-
formation nor a complicated optimization procedure is needed
for the power distribution. For a smart optimization technique
usually an objective along with few system constraints as well
as a centralized unit or a decentralized approach for regulation
and controlling of the sensor network are needed. Furthermore,
the optimization procedure will be successful when additional
information is available such as the channel state information
or the statistical properties of involved random variables. In the
literature, the most well-known objectives are the minimization
of the mean squared error [2], [3] (MSE) and the maximization
of the data rate or system capacity [4]–[8]. The latter one is a
challenging approach, since a closed-form formula describing
the capacity of general sensor networks is missing in the
literature. Hence, the former approach receives more attention
for investigation. For example, in [9]–[16] the MSE approach
is applied to achieve optimal solutions in closed-form to the
power allocation problem. The optimization problems there
are subject to individual power and sum power constraints.
Furthermore, a fusion center is considered in order to combine
the independent observations of the SNs into a single reliable
estimate of the target. Apart from these techniques, several
powerful optimization strategies are proposed, which however
have a minor importance for the present work. Nevertheless,
we want to mention the work [17], where a cluster-based
approach and a centralized routing protocol is used to improve
the performance. Moreover, a theoretical upper bound is inves-
tigated in [18], which is in practice not achievable. Finally, a
further notable publication is [19] in which different heuristics
are proposed.

In the present work, our goal is the comparison of five
state-of-the-art optimization techniques for allocation of power
in sensor networks. We start with the presentation of the



optimal power allocation strategy, then the uniform power
allocation strategy is discussed, and finally we treat the single-
node-selection strategy. In between, both the optimal and
the uniform power allocation strategies with occasional node
failures are considered. We show the performance of each
optimization technique via numerical simulations and discuss
their advantages and disadvantages.

We start our investigations with the description of the
underlying system model and scenarios in the next section.
Subsequently, all optimization strategies are explained and
presented. Then, simulation results are shown and discussed.
Afterwards, we summarize our contributions in the conclusion.

Mathematical Notations:

Throughout this paper, we denote the sets of natural, real
and complex numbers by N, R and C, respectively. Note that
the set of natural numbers does not include the element zero.
Moreover, R+ denotes the set of non-negative real numbers.
Furthermore, we use the subset FN ⊆ N, which is defined
as FN := {1, . . . , N} for any given natural number N . We
denote the absolute value of a real or complex-valued number
z by |z|. The expected value of a random variable v is denoted
by E [v] while the probability that an event A is occurred is
described by Prob(A). Moreover, the notation V ? stands for
the value of an optimization variable V where the optimum is
attained.

II. THE SYSTEM MODEL

In this section, we use the same system model that is
elaborated in [11] for the most optimization strategies. This
system model is depicted in Figure 1 and is briefly presented in
the following. For a system in which occasional node failures
are allowed, we use an extended system model, which is
described in the next subsection. An overview of all system
parameters is given in Table I.

We assume a discrete time system with perfect time, phase
and frequency synchronization. A sensor network consisting
of K ∈ N independent and spatially distributed SNs is con-
sidered, where each SN receives random observations from a
jointly observed target in each observation process. If a target
signal r ∈ C with R := E [|r|2] and 0 < R <∞ is present,
then the received power at the SN Sk is a part of the
emitted power from the actual target. Each received signal
is weighted by the corresponding channel coefficient gk ∈ C
and is disturbed by additive white Gaussian noise (AWGN)
mk ∈ C with Mk := E [|mk|2] <∞. In this paper, we assume
that the sensing channel is constant, i.e., E [gk] = gk and
E [|gk|2] = |gk|2. The sensing channel is obviously wireless.

All SNs continuously take samples from the disturbed
received signal and amplify them by the amplification factors
uk ∈ R+ without any additional data processing. Thus, the
output signal and the expected value of its transmission power
are described by

xk := (rgk +mk)uk , k ∈ FK , (1)

Fig. 1. The system model of the distributed sensor network, which shows
the signal flow from a target signal over the sensor nodes to a fusion center.

and

Xk := E [|xk|2] = (R|gk|2 +Mk)u
2
k , k ∈ FK , (2)

respectively. The local measurements are then transmitted to
a fusion center which is placed at a remote location. The
data communication between each SN and the fusion center
can be either wired or wireless. In the latter case, a distinct
waveform for each SN is used to distinguish the commu-
nication of different SNs and to suppress inter-user (inter-
node) interferences at the fusion center. Hence, all K received
signals at the fusion center are pairwise uncorrelated and are
assumed to be conditionally independent. Each received signal
at the fusion center is also weighted by the corresponding
channel coefficient hk ∈ C and is disturbed by additive white
Gaussian noise nk ∈ C with Nk := E [|nk|2] <∞, as well. We
assume that the communication channel is also constant, i.e.,
E [hk] = hk and E [|hk|2] = |hk|2.

The noisy received signals at the fusion center are weighted
by the fusion weights vk ∈ C and combined together in order
to obtain a single reliable observation r̃ of the actual target
signal r. In this way, we obtain

yk :=
(
(rgk +mk)ukhk + nk

)
vk , k ∈ FK , (3)

and hence,

r̃ :=

K∑
k=1

yk = r

K∑
k=1

gkukhkvk︸ ︷︷ ︸
signal gain

+

K∑
k=1

(mkukhk + nk)vk︸ ︷︷ ︸
noise

.

(4)
Note that the fusion center can separate the input streams
because the data communication is either wired or performed
by distinct waveforms for each SN.

In order to obtain a single reliable observation at the
fusion center, the value r̃ should be a good estimate of the
present target signal r. Thus, the amplification factors uk and
the weights vk should be chosen such as to minimize the
average absolute deviation between r̃ and the true target signal
r. Hence, the amplification factors and the fusion weights
are the only optimization parameters to accomplish a given
optimization strategy.



Fig. 2. The extended system model with presentation of occasional node
failure.

A. The Extended System Model

In the above system model, it is assumed that each SN
perfectly works and can be configured by a controlling unit,
e.g., the fusion center, at any time. This assumption is often
not valid in practice, since the SNs are usually too weak
and sensitive, and thus easily damaged. Hence, we update the
previous system model by an extended one, which is depicted
in Figure 2 and explained in the following.

We incorporate the binary independent random variables
ak ∈ {0, 1} and bk ∈ {0, 1} with the corresponding proba-
bilities Prob(ak = 1) = ζk and Prob(bk = 1) = γk into
the previous system model, respectively. If ak of the kth SN
is equal to one, then this SN is sound and accurate, and
will work normal. In contrast, if ak is equal to zero, then
the kth SN is brocken or faulty and can act in two different
ways. The first way is described with bk = 0, when the
SN is completely brocken and cannot send any information.
The second way is described with bk = 1, when the SN
is defect and faulty, and will send useless information wk

to the fusion center. The signal wk ∈ C with the power
Wk := E [|wk|2] <∞ is assumed to be zero-mean and can be
interpreted as interference, which cannot be suppressed at the
fusion center. In summary, we can distinguish between three
operating modes i) The kth SN is healthy with probability ζk,
i.e., ak = 1 and bk ∈ {0, 1}, ii) it is brocken and silent with
probability (1 − ζk)(1 − γk), i.e., ak = 0 and bk = 0, iii) it
is defect and acts as interference with probability (1− ζk)γk,
i.e., ak = 0 and bk = 1.

With this new setup, the output signal and the expected
value of its transmission power are described by

xk := (rgk +mk)ukak + bkwk(1− ak) , k ∈ FK , (5)

and

Xk = (R|gk|2 +Mk)u
2
kζk + γkWk(1− ζk) , k ∈ FK , (6)

respectively. This leads to the estimate

r̃ = r

K∑
k=1

gkukhkvkak

+

K∑
k=1

(
mkukhkak + bkwk(1− ak)hk + nk

)
vk .

(7)

B. Power Limitations of the System

As mentioned in the introduction, a smart hardware imple-
mentation of the SNs is highly necessary in order to prolong
the lifetime and enable an energy-aware operation of the SNs.
Following this trend, the average power consumption of each
SN is approximately equal to its average output power Xk,
if the input signal is negligible in comparison to the output
signal and if the nodes have smart power components with
low-power dissipation loss. We assume that equality between
Xk and the average power consumption of each node is
ensured. In the present work, we assume that the output
power-range of each SN is in average limited by Pmin ∈ R+

and Pmax ∈ R+ with 0 ≤ Pmin < Pmax. The lower limit Pmin
denotes the minimum power which is needed to guarantee the
awareness and presence of the SN while the upper limit Pmax
denotes the maximum allowed transmission power per SN due
to power regulation standards or due to the functional range
of the integrated circuit elements.

In addition, each SN is usually powered by weak energy
supplies, e.g., batteries, such that the operation time of the
entire sensor network is limited. Hence, it is wise to incor-
porate and consider a sum power constraint Ptot ∈ R+ with
KPmin ≤ Ptot ≤ KPmax. In this way, the sensor network shall
operate under the constraints

Pmin ≤ Xk ≤ Pmax , k ∈ FK , (8)

and
K∑

k=1

Xk ≤ Ptot . (9)

Note that the output power Xk is a function of the amplifi-
cation factor uk and thus we can adjust Xk in order to satisfy
given optimization strategies.

III. OPTIMIZATION STRATEGIES

In this section, we present five state-of-the-art optimization
strategies in order to enable a fair comparison and a fruitful
discussion.

A. Optimal Power Allocation

In order to obtain an accurate estimate r̃ of the target signal
r, we aim at finding estimators r̃ of minimum mean squared
error in the class of unbiased estimators. With the aid of (4),
we hence minimize the deviation

V := E
[
|r̃ − r|2

]
=

K∑
k=1

|vk|2
(
u2k|hk|2Mk +Nk

)
(10)



TABLE I
NOTATION OF SYMBOLS THAT ARE NEEDED FOR THE DESCRIPTION OF

EACH OBSERVATION PROCESS.

Notation Description
K number of sensor nodes;
k the index of kth sensor node;
FK the index-set of K nodes;
r, R the present target signal and its quadratic absolute mean;
r̃ the estimate of r;

gk , hk complex-valued channel coefficients;
mk , nk complex-valued zero-mean AWGN;
Mk , Nk variances of mk and nk;
uk , vk non-negative amplification factors and complex-valued fu-

sion weights;
ϑk phase of vk;
φk phase of the product gkhk;

ak , ζk binary random variable and its expected mean to distin-
guish between healthy and brocken sensor nodes;

bk , γk binary random variable and its expected mean to distin-
guish between both modes of defectiveness;

wk , Wk faulty signal and its power of kth sensor node;
xk , Xk output signal and output power of kth sensor node;
yk input signals of the combiner;

Pmin, Pmax lower and upper output power limitations of each sensor
node;

Ptot the total power consumption of the network.

with respect to uk and vk under the unbiasedness

E [r̃ − r] = 0 ⇔
K∑

k=1

gkukhkvk = 1 . (11)

In addition, the optimization problem shall be subject to both
power constraints (8) and (9).

It is simple to show that this optimization problem is non-
convex and very hard to solve. Nevertheless, its optimal solu-
tion in closed-form is worked out in [11] and later extended
in [20]. This solution yields the optimal amplification factors
u?k and fusion weights v?k which in turn specify the optimal
transmission powers X?

k . The ratio R
V ? is then equivalent to the

SNR of the entire sensor network and describes the quality of
the estimate r̃ at the output of the fusion center. This ratio will
help us to fairly compare different optimization strategies by
variation of different system parameters. To avoid confusion,
we hereinafter denote this ratio by SNRO.

B. Optimal Power Allocation with Occasional Node Failure

Now, we consider the more realistic system model in
which occasional node failures are taken into account, cf.
Subsection II-A. We again are interested in finding estimators
of minimum mean squared error in the class of unbiased
estimators. By using (7), the objective for minimization is
given by

V := E
[
|r̃ − r|2

]
=

K∑
k=1

|vk|2
(
u2k|hk|2Mkζk +Nk

)
+

K∑
k=1

|vk|2(1− ζk)|hk|2
(
Ru2k|gk|2ζk +Wkγk

) (12)

with respect to uk and vk under the unbiasedness

E [r̃ − r] = 0 ⇔
K∑

k=1

gkukhkvkζk = 1 . (13)

In addition, the optimization problem shall be subject to both
power constraints (8) and (9). Note that in contrast to the
objective in (10) the deviation in (10) is a function of the
parameters ζk and γk and has thus more degree of freedom.

Also this optimization problem is non-convex and even
harder to solve than the previous one. Its optimal solution
is characterized in our paper [21]. The optimal values u?k,
v?k, X?

k and V ? are obviously functions over ζk ∈ (0, 1) and
γk ∈ (0, 1). The SNR of the entire sensor network is again
described by the ratio R

V ? . We hereinafter denote this ratio by
SNROwF.

Note that both SNRO and SNROwF are functions over
Pmin, Pmax and Ptot as well as Mk, Nk, gk and hk. This means
that for the optimal allocation strategy all these parameters
must be known beforehand. However, this knowledge is often
not available so that such optimization strategies are rather
used for theoretical considerations. This is the main reason
why uniform allocation or single-node-selection strategies are
often used in practice. We will consider these methods in the
following.

C. Uniform Power Allocation with Optimal Fusion Rule

The simplest power allocation strategy is the uniformly
distributed one. That means that the total power Ptot is equally
divided and shared between all SNs such that the output power
of each SN becomes

X?
k = max

{
Pmin,min{Pmax,

Ptot

K
}
}
. (14)

From this we can calculate the optimal amplification factors u?k
by the relation (2). It remains to optimize the fusion weights. If
the goal is again to find estimators of minimum mean squared
error in the class of unbiased estimators, then we can minimize
the objective

V := E
[
|r̃ − r|2

]
=

K∑
k=1

|vk|2
(
u2k|hk|2Mk +Nk

)
(15)

for fixed amplification factors uk = u?k and with respect to vk
under the unbiasedness

E [r̃ − r] = 0 ⇔
K∑

k=1

gku
?
khkvk = 1 . (16)

As it is easily to see, this optimization problem is a
convex program and can again be solved in closed-form. The
optimization of (15) will lead to the optimal fusion weights
v?k and the deviation V ?. However, this result is a particular
solution of the problem (10). To see this relation, we only need
to pretend Pmin = Ptot

K or Pmax = Ptot
K , due to equation (14),

and solve (10) with respect to both uk and vk which will then
lead to the same solution.

We hereinafter denote the ratio R
V ? for the uniform setup

by SNRU.



TABLE II
STANDARD VALUE OF SYSTEM PARAMETERS.

Parameter: K R σ2
g = σ2

h Mk = Nk Pmin

Value: 300 1 1 0.1 0

Parameter: Pmax Ptot W ζmin γ

Value: 10 100 0.1 0.5 [0, 1]

D. Uniform Power Allocation with Optimal Fusion Rule and
Occasional Node Failure

Analog to the previous case, the total power Ptot is uni-
formly allocated to the SNs, which will result in X?

k as given
in (14). By pretending Pmin = Ptot

K or Pmax = Ptot
K we can

use the results for the problem in (12) in order to obtain the
optimal values u?k, v?k and V ?. We hereinafter denote the ratio
R
V ? by SNRUwF.

Note that any defect SN will have the output power X?
k =

bkWk, which can totaly differ from the adjusted one, i.e.,
X?

k = Ptot
K .

E. Best Single Node Selection

Another important method is the single-node strategy, in
which only one powerful SN will consume the entire power
Ptot, while all other SNs are inactive. This method is important,
because it enables the comparison between a large-scale sensor
network with many weak SNs and a powerful single node
system which is established at the position of the most proper
SN. The main question is which of the SNs is the most proper
one? In [22], it is shown that the SN with the largest value of

zk :=
|gkhk|2Ptot

Mk|hk|2Ptot +Nk(R|gk|2 +Mk)
(17)

is the most proper SN, in the sense that choosing the most
proper SN will lead to the largest SNR at the fusion center
for the given amount of Ptot. In this way, we can re-index all
SNs, such that zk ≥ zk+1 for all k ∈ FK−1 holds and select
the first SN which should be virtually replaced by a powerful
node. This node obtains the power X?

1 = Ptot and in turn u?1
by the aid of (2). Keeping u1 = u?1 and uk = u?k = 0 fixed
for all k > 1, we can use the same objective and constraint as
in (10) and (11), respectively, in order to obtain the weight v?1
and the deviation V ?. Note that (17) only describes the quality
of healthy SNs. In scenarios, where SNs might be brocken,
equation (17) must be extended for considering the impact of
brocken and defect SNs. The entire SNR of this system is
hereinafter denoted by SNRB.

IV. SIMULATION BASED COMPARISONS

In this section, we set out to compare the solution of the
different optimization strategies from Section III via numer-
ical simulations. We consider four different scenarios with
randomly distributed SNs to demonstrate the performance of
all optimization strategies. Our goal is to evaluate the values
SNRO, SNROwF, SNRU, SNRUwF, and SNRB for different
ranges of parameters.
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Fig. 3. The behavior of the SNR at the fusion center with respect to the sum
power Ptot is visualized. All curves show an increasing property in Ptot.

A. Simulation Setup

In order to fairly evaluate the performance of all optimiza-
tion strategies with each other, we perform in each scenario
five simulations with the same sensor network. For each
scenario new realizations are thrown for the channels, noise
signals, target signal, and the probability of healthiness ζk.
In contrast, in all five simulations all realizations remain
the same to simplify subsequent comparisons of the five
optimization methods. The realizations of the channels, noise,
and target signal are drown randomly from independent Gaus-
sian distributions. In each scenario, 6500 channel realizations
are generated. The variances of the channel fluctuations are
denoted by σ2

g := E [|gk|2] and σ2
h := E [|hk|2] with expectation

over k. For each channel realization, 1000 random realizations
are generated for each noise signal mk and nk, the target signal
r, the probabilities ζk, the different modes ak and bk, and the
unwanted signal wk. For the noise signals we always consider
the same variances, i.e., Mk = Nk for all k. The target signal
r is randomly generated with zero-mean and variance R. The
random values ζk are drown from a uniform distribution over
the range [ζmin, 1]. The modes ak and bk are generated by
a Bernoulli distribution with expectations ζk and γk, where
γk itself is uniformly distributed over the interval [0, 1]. The
unwanted signal wk is also zero-mean Gaussian distributed
with variance W .

In each scenario we consider the influence of one of the
four parameters Ptot, R, Nk = Mk and ζmin on the SNR at
the fusion center. For this task we vary the parameter under
consideration while the other parameters are constant. Table II
shows the standard values of all system parameters.

Hereinafter, the optimization techniques described in Sec-
tions III-A, III-B, III-C, III-D, and III-E are denoted in the leg-
ends by ‘Optimal–Non-Robust’, ‘Optimal–Robust’, ‘Uniform–
Non-Robust’, ‘Uniform–Robust’, and ‘Best–Selection’, re-
spectively.



In this way, the effective number of iterations per simulation
point is about 6500×1000 in order to guaranty the convergence
of the simulations and to obtain smooth curves. Because of
the high number of iterations and the large number of SNs,
it is necessary to hardly optimize the simulation framework
in order to reduce the simulation time and to improve the
accuracy of the results.
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Fig. 4. The behavior of the SNR at the fusion center with respect to the target
signal power R is visualized. All curves show an increasing property in R.

B. Simulation Results

In Fig. 3, we observe the simulation results of the first
scenario. In this scenario, we are interested to compare the
behavior of all five methods with respect to variation of the
sum power Ptot. The first observation is that all curves are in-
creasing in Ptot, which means that by increasing the sum power
limitation the SNR at the fusion center will also increase. But,
the ‘Best–Selection’ strategy shows that the increment of the
SNR may also be very small, due to a potential selection of a
brocken or defect SN as the most proper one. Furthermore, the
results simply show that an optimal power allocation is always
better than the corresponding uniform allocation. The optimal
power allocation converges to the uniform strategy due to the
individual power limitations given by Pmax. On the other hand,
robust optimization strategies achieve a better performance
for larger values of Ptot than the non-robust strategies. The
reason behind this behavior is the impact of the unbiasedness
constraints (11) and (13). While for the high power region
the unbiasedness can better be fulfilled since more SNs are
involved, for the low power region the robust optimization
methods must concentrate the available sum power on fewer
SNs to satisfy the constraint (13). If the value of ζk is small,
the degeneration of the robust methods will further increase.

In Fig. 4, the increasing behavior of the SNR at the
fusion center with respect to the power R of the target
signal is depicted. The curves behave very similar to the
ones achieved in the previous scenario with the exception
of the ‘Best–Selection’ strategy. The curve again shows, that
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Fig. 5. The behavior of the SNR at the fusion center with respect to the noise
powers Nk = Mk for all k is visualized. All curves show an decreasing
property in the noise powers.

the ‘Best–Selection’ strategy is very sensitive on failure of
SNs which is similar to be highly sensitive with respect
to the power of the target signal. Another difference in
comparison to the previous scenario is shown between the
‘Optimal–Robust’ and the ‘Uniform–Robust’ strategies. The
gap between both curves is increasing in R since this input
power is always shared between all SNs by the ‘Uniform–
Robust’ strategy and it hence cannot have much improvement
on the SNR at the fusion center.

The simulation results of the third scenario are depicted
in Fig. 5. We can observe a decreasing behavior of all
curves with respect to the noise powers Mk and Nk. It is
interesting to see that for the low noise power region the
‘Optimal–Non-Robust’ and the ‘Optimal–Robust’ strategies
converge to ‘Uniform–Non-Robust’ and ‘Uniform–Robust’
strategies, respectively. But in contrast, for the high noise
power region the ‘Optimal–Non-Robust’ and the ‘Uniform–
Non-Robust’ strategies converge to ‘Optimal–Robust’ and
‘Uniform–Robust’ strategies, respectively. The behavior for
the low noise power region is simple to explain since then
the noise parts in (4) and (7) are of minor importance and the
gap between both robust strategies and non-robust ones is due
to the expression

∑K
k=1 bkwk(1− ak)hkvk in (7). In the high

noise power region this expression can be neglected and since
the signals are noisy the both optimal solutions will behave
similar and different from both uniform solutions. The ‘Best–
Selection’ strategy achieves here also the worst performance.

The next scenario is for investigation of the impact caused
by the probability ζk on the system performance. We thus con-
sider the curves in Fig. 6, where as usual the ‘Best–Selection’
strategy has the worst performance. All curves are increasing
in ζmin since increasing ζmin will lead to a sensor network
with less number of brocken and defect SNs. Fig. 6 highlights
the importance of the robust optimization strategies. Both
‘Optimal–Robust’ and ‘Uniform–Robust’ strategies achieve a



good performance in sensor networks in which the number of
failure is very high.
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Fig. 6. The behavior of the SNR at the fusion center with respect to the
probability ζmin is visualized. All curves show an increasing property in ζmin.

V. CONCLUSION

A comparison of different power optimization techniques is
usually difficult, since different methods often need different
frameworks and special scenarios to work properly. We have
investigated five state-of-the-art optimization techniques based
on the same system model, in order to achieve the same
framework for further comparisons. In particular, we have
discussed the optimal, the uniform, and the single-node-
selection power allocation strategies. In addition, we have
extended both the optimal and the uniform power allocation
strategies for the case in which some sensor nodes might be
broken or defect. In practical applications, occasional node
failures are usually the case, hence we have compared the
robust optimization techniques against the non-robust methods
within the same framework. We have seen that the single-
node-selection strategy achieves the worst performance in
scenarios with occasional node failures. Optimal power al-
location strategies achieve a better performance compared to
the corresponding uniform allocation strategies. We have also
shown that robust optimization techniques can only improve
the system performance for specific ranges of parameters. For
the complement range, the non-robust techniques achieve a
better performance. Hence, it is important to know which
ranges of parameters are given in particular scenarios in
order to apply the most proper method and achieve the best
performance.
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