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Abstract—In this paper, we study the multi-hop relaying per-
formance with finite blocklengths under the quasi-static Rayleigh
fading channel. The maximum throughput under the infinite
blocklength regime (IBL-throughput) and the throughput under
the finite blocklength regime (FBL-throughput) are derived,
respectively. Moreover, we investigate the FBL-throughput under
two different setups: We first consider transmissions with a target
overall error probability through the multi-hop network while in
the second scenario the coding rate is assumed to be fixed. By
numerical analysis, we show the difference between the IBL-
throughput and the FBL-throughput of multi-hop relaying. In
particular, the optimal number of hops under the FBL regime
and the IBL regime are different. In addition, we show that
the FBL-throughput under the target error probability scenario
is quasi-concave in the target error probability while it is also
quasi-concave in the coding rate under the constant coding
rate scenario. Moreover, the influences of blocklength on FBL-
throughputs under the two scenarios are different. In particular,
the performance of target error probability scenario is more
sensitive to increasing the blocklength in comparison to the
constant coding rate scenario.

Index Terms—Finite blocklength, decode-and-forward, multi-
hop relaying, throughput.

I. INTRODUCTION

In wireless communication, relaying is an efficient way
to achieve broader coverage and to mitigate wireless fading
by reducing pathloss. Specifically, when multi-hop relaying
system is available for data transmission, such as in device-to-
device communications, the performance of the transmission
is significantly improved [1] [2] [3]. However, all the above
studies are under the Shannon’s channel capacity with ideal
assumption, i.e., coding is assumed to be performed using a
block with an infinite length.

As the blocklength of coding is restricted to a small size, the
error probability of the communication is no longer negligible.
In [4], the authors identify a tight bound of the coding rate
for a given error probability in the finite blocklength (FBL)
regime, which is accurate even when the blocklength is as
small as 100. The research in [4] shows that the performance
loss due to a finite blocklength is considerable and becomes
more significant when the blocklength is relatively short.
This actually indicates a tradeoff in the multi-hop relaying
system between reducing pathloss by introducing more hops
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and FBL performance loss due to more shorter blocklength
at each hop. In the previous work of two authors of this
paper, the performance model of decode-and-forward (DF)
relaying with static channels [5] [6] and quasi-static channels
[7] was investigated. However, all these works focused on
exact two-hop relaying systems, leaving the analysis of multi-
hop relaying (where the number of hops could be higher than
two) in the FBL regime an open problem.

In this paper, we consider a under the quasi-static Rayleigh
fading channel. We address the following fundamental ques-
tions of multi-hop relaying under the FBL regime: What is
the performance difference between multi-hop relaying under
the FBL regime and the one under the infinite blocklength
(IBL) regime? What is the impact of the FBL on the system
behavior? To address the questions, we first derive the maxi-
mum throughput in the IBL regime (IBL-throughput) and the
maximum throughput in the FBL regime (FBL-throughput) of
a multi-hop relaying. Subsequently, we investigate the FBL-
throughput under the scenario with target overall error proba-
bility and the scenario with constant coding rate. In addition,
we show the difference between the IBL performance and
the FBL performance through numerical analysis. Moreover,
we conclude a set of guidelines for design efficient multi-hop
relaying networks.

The rest of this paper is organized as follows. Section II
introduces the system model under consideration. In Section
III, the IBL-throughput and the FBL-throughput of a multi-
hop relaying are derived. Based on this, the FBL-throughput
of a multi-hop relaying is studied under the target overall
error probability scenario and the constant coding rate sce-
nario, respectively. Finally, numerical results are provided and
discussed in Section IV.

II. SYSTEM MODEL

We consider a N -hop relaying system as shown in Fig. 1,
consisting of a source node R0, a destination node RN , and
(N − 1) DF relay nodes R1, R2, ..., RN−1. We consider a
simple linear topology where nodes are placed equidistantly
in a line. The total transmission distance form R0 to RN
is denoted by D. The entire system operates in time-slotted
fashion and time is divided into frames of length, where M
is total number of symbols for a transmission period, i.e.,



transmitting the data blocklength from R0 to RN . In other
words, the blocklength of each hop is given m = M/N . For
simplification, we assume M is always the integral multiple
of N . In other words, m is an integer.

N−1R NR
Source

Distance D/N

  

Destination

Distance D

R2R1R0

Fig. 1. A linear multihop relaying system with N − 1 relays.

We consider a quasi-static Rayleigh fading channel model,
i.e., channels are constant in a transmission period and vary
from one period to the next. During a transmission period j,
the received signal at ith hop is given by

yi,j = ptxhi,jxj + ni,j , for i = 1, ..., N. (1)

The transmitted signal xj and received signal yi,j are complex
m-dimensional vectors. Besides, ni,j (i = 1, ..., N) denote the
noise vectors for different hops in transmission period j, which
are independent and identically distributed (i.i.d.) complex
Gaussian vectors: n ∼ N

(
0, σ2Im

)
, n ∈ {n1,j , . . . ,nN,j},

where Im denotes an m × m identity matrix. In addition,
ptx represents the transmit power for ith hop. We consider a
total power constraint assumption, i.e., all nodes equally share
the total power P . Furthermore, hi,j is the channel of ith
hop during the transmission period j. Under the quasi-static
channel model, the instantaneous channel gain for each hop
has two components, including the average channel gain and
the random fading. On the one hand, we denote the average
channel gains (e.g., due to the path loss) of these hops over
the transmission periods by

∣∣h̄i∣∣2 (i = 1, ..., N). On the other
hand, we assume that the gain due to Rayleigh fading is given
by the exponential distribution: f (z) = e−z . We denote zi,j
as the gains due to Rayleigh fading in transmission period j

for hop i. Hence, we have |hi,j |2 = zi,j
∣∣h̄i∣∣2, i = 1, ..., N .

Moreover, these channel fading gains at different hops during
the same transmission period are assumed to be independent
and identically distributed (i.i.d). We assume perfect channel
state information (CSI) at the receivers and in particular at the
source. Thus, the received signal to noise ratio (SNR) at ith
hop in transmission period j is given by

γi,j =
|hi,j |2ptx

σ2
=
zi,j
∣∣h̄i∣∣2P
σ2N

, for i = 1, ..., N. (2)

We consider the scenario with finite blocklengths, where
decoding errors may occur due to noise.1 We assume that
all relay nodes and the destination node can detect the errors
reliably. On this protocol, an relay does not forward the block
when an error occurs in link to the relay. In addition, if a
decoding error occurs at a relay node or the destination node,
the throughput of the multi-hop relaying system equals zero.

III. MULTI-HOP RELAYING PERFORMANCE

In this section, the multi-hop relaying performance is inves-
tigated under both the IBL regime and the FBL regime.

A. The IBL-throughput of Multi-hop Relaying

Under the IBL regime, according to the Shannon capacity
theory a coding rate being higher than the Shannon capacity
definitely leads to an error/outage. Hence, the maximum
coding rate at ith hop during the transmission period j is
subject to the corresponding Shannon capacity

C
(
|hi,j |2

)
= log2

(
1 +
|hi,j |2ptx

σ2

)
= log2

(
1 +

zi,j
∣∣h̄i∣∣2P
σ2N

)
.

(3)

Then, the IBL-throughput during the transmission period j is
subject to the link with the worst channel quality and given
by

CIBL,j = 1
N min
i=1,...,N

{
C
(
|hi,j |2

})
= 1

N C
(

min
i=1,...,N

{
zi,j
∣∣h̄i∣∣2}). (4)

Hence, the (average) IBL-throughput (in bits per channel
use) of multi-hop relaying over channel fading is

CIBL =
1

N
E
z

[
C
(

min
i=1,...,N

{
zi,j
∣∣h̄i∣∣2})] , (5)

where E
z

[∗] is the expectation over the distribution of channel
fading z.

B. The FBL-throughput of Multi-hop Relaying

For the real additive white Gaussian noise (AWGN)
channel, Theorem 54 in [4] derives a tight bound on
the coding rate for a single-hop transmission system.
With SNR γ, error probability ε, and blocklength m,
the coding rate r (in bits per channel use) is given by:

r ≈ 1
2 log2 (1 + γ)−

√
1

2m

(
1− 1

(1+γ)2

)
Q−1 (ε) log2e, where

Q (w) =
∞
∫
w

1√
2π
e−

t2

2 dt is the Gaussian Q-function.

The above result for a real AWGN channel was extended to
a complex quasi-static fading channel in [7]–[9]. With the error
probability εi,j and blocklength m = M/N , the coding rate
(in bits per channel use) at the ith hop during the transmission
period j is given by

ri,j = R
(
|hi,j |2, εi,j ,m

)
= C

(
|hi,j |2

)
−
√

1
m

(
1− 2−2C(|hi,j |2)

)
Q−1 (εi,j) log2e.

(6)

1Recall that under the infinite blocklength regime, the transmission is error-
free if the coding rate is lower than the shannon capacity.



In the other way round, if the coding rate ri,j is given, the
decoding error probability at the ith hop is given by

εi,j = P
(
|hi,j |2, ri,j ,m

)
= Q

 C(|hi,j |2)−ri,j√
1
m

(
1−2−2C(|hi,j |2)

)
log2e

 .
(7)

Hence, the overall error probability during the transmission
period j is given by

εj = 1−
N∏
i=1

(1− εi,j). (8)

Thus, the general overall FBL-throughput of multi-hop
relaying at transmission period j is given by

CFBL,j =
1

N
εj min
i=1,...,N

{ri,j} . (9)

Finally, the average FBL-throughput over channel fading is

CFBL = E
z

[CFBL,j ]. (10)

So far, we have derive the FBL-throughput for a general
case. Then, we further study the FBL-throughput of multi-hop
relaying by considering the following two specific scenarios.
In practice, it is possible that traffics have target error prob-
ability, e.g., control signals. The first scenario we considered
is corresponding to the above service, where we assume that
the overall error probability of multi-hop relaying is target.
Under this scenario, the target error probability at each hop
is influenced by the number of hops. In addition, applications
such as VoIP likely generate date with constant rate. In our
second setup, we consider a scenario where the coding rate at
each hop is constant. Hence, due to the independent random
channel behaviors at different links, the error probabilities at
different hops are more likely different. It should be mentioned
that these two scenarios are the same under the IBL regime
where the target error portability is always zero.

1) Scenario with target overall error probability: Un-
der a scenario with target overall error probability ε∗, i.e.,
the equivalent error probability at each hop is N

√
1− ε∗.

Hence, the coding rate ri,j at each hop is given by ri,j =

R
(
|hi,j |2, 1− N

√
1− ε∗, MN

)
.

Thus, the (average) FBL-throughput (in bits per channel
use) of multi-hop relaying over time in this scenario is

CFBL = (1− ε∗)E
z

[
1

N

(
min

i=1,...,N
{ri,j}

)]
. (11)

2) Scenario with constant coding rate: In this scenario we
assume the coding rate at each hop is the same (i.e. rj), the
FBL-throughput (in bits per channel use) of multi-hop relaying
during transmission period j is given by

CFBL,j =
1

N

(
1−

N∏
i=1

(1− εi,j)

)
min

i=1,...,N
{ri,j}, (12)

where εi,j is given by P
(
|hi,j |2, rj ,m

)
. Then, the average

FBL-throughput can be obtained according to (10).

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we investigate the multi-hop relaying sys-
tems by numerical analysis where we consider the following
parameterization of the system model: The total transmitted
power and noise power are set to 22 dBm and −85 dBm,
respectively. Distance is set to D ∈ [0.5km, 7km], while
blocklengh is set to M ∈ [200, 6000].

We study the FBL-throughput of multi-hop relaying while
varying the blocklength. We show the results in Fig. 2 where
both the target overall error probability scenario and the con-
stant coding rate scenario are considered. We can observe that
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Fig. 2. The performance comparison between IBL-throughput and FBL-
throughput under the scenario with target overall error probability and the
scenario with constant coding rate while varying blocklength. In the analysis,
D = 6km.

FBL-throughputs of both these two scenarios are increasing
in the blocklength, while IBL-throughput is not influenced by
the blocklength. Under the target error probability scenario,
the FBL-throughput with a low overall error probability target
increasing rapidly in blocklength in comparison to the one
with a relatively high overall error probability target. For
the constant coding rate scenario, the FBL-throughput with a
high coding rate increasing in blocklength more significantly
than the one with a low coding rate. More interesting, the
influences of blocklength on FBL-throughputs under the two
scenario are different. In particular, the performance of target
error probability scenario is more sensitive to increasing the
blocklength.

In the following, we study the target error probability
scenario and the constant coding rate scenario, respectively.
We first consider the target error probability. We show the
relationship between FBL-throughput and target overall error
probability in Fig. 3. From the figure, we observe a interesting
results that the FBL-throughput is quasi-concave in the target
overall error probability. In other wards, under the target error
probability scenario the FBL performance can be optimized
by choosing an optimal target overall error probability.

In addition, under the target error probability scenario
the relationship between the FBL-throughput and the total
transmission distance is shown in Fig. 4. From the figure,
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Fig. 3. Target error probability scenario: The FBL-throughput vs. the overall
error probability. In the analysis, D = 6km.
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Fig. 4. Target error probability scenario: The throughput vs. distance. In the
analysis, M = 1500.

the FBL-throughput with large overall error probability has
a similar performance as IBL-throughput, while the FBL-
throughput with small overall error probability is significantly
different from the IBL-throughput. Moreover, the relationship
between the optimal number of hops and the total transmission
distance is shown in Fig. 5. The optimal number of hops is
strictly increasing in the total transmission distance. Moreover,
the optimal number of hops with small overall error probability
is bigger than that with large overall error probability.

The last study under the target error probability scenario
is regarding the relationship between the optimal number of
hops and the blocklength. We show the results in Fig. 6
and observe that if the target overall error probability is not
extremely high, the optimal number of hops under the FBL
regime is higher than the ones under the IBL regime. Under
this case, the optimal number of hops under the FBL regime
is decreasing the blocklength. More interestingly, when the
overall error probability is significantly high, which makes
the target error probability at each hop be higher than 0.5, the
optimal number of hops under the FBL regime becomes lower
than the IBL regime, while the optimal number of hops under
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Fig. 6. Target error probability scenario: The optimal number of hops vs.
blocklength. In the analysis, D = 6km.

the FBL regime under this case is increasing the blocklength.
Then, we focus on the scenario with constant coding rate.

We show in Fig. 7 the relationship between the coding rate
and the FBL-throughput. We plot the corresponding IBL-
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Fig. 7. Constant coding rate scenario: The FBL-throughput vs. the coding
rate at each hop. In the analysis, D = 6km.



throughput of multi-hop relaying as a performance reference.
We find an interesting result that the FBL-throughput is quasi-
concave in the coding rate. Therefore, under the constant cod-
ing rate scenario, the FBL-throughput of multi-hop relaying
has a global maximum which can be achieved by choosing an
appropriate coding rate.

In addition, the relationship between FBL-throughput and
the total transmission distance is shown in Fig. 8. From the
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Fig. 8. Constant coding rate scenario: The throughput vs. total transmission
distance. In the analysis, M = 1500.

figure, we observe that a low coding rate is more suitable for
long transmission distances. More interesting, the performance
of FBL-throughputs under the constant coding rate scenario
are significantly different form the IBL-throughput. This is
totally different from the FBL performance under the target
error probability scenario. In particular, setting an overaggres-
sive coding rate, e.g., to be higher than the Shannon capacity,
leads to a significant overall error probability.

Furthermore, the relationship between the optimal number
of hops and the total transmission distance is shown in Fig. 9.
We observe from the figure that for some cases the optimal
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Fig. 9. Constant coding rate scenario: The optimal number of hops vs. total
transmission distance. In the analysis, M = 1500.

number of hops under the FBL regime is less than the optimal
number of hops under the IBL regime while for the rest cases

are not. The boundary between these two different type of
cases is actually the special case under which the coding rate
equals the Shannon capacity. In particular, with a coding rate
being lower than the Shannon capacity, the optimal number of
hops under the FBL regime is smaller than that under the IBL
regime. This is the reason why all IBL curves are lower than
the IBL curve when the distance is short. On the other hande,
with a high coding rate being higher than the Shannon capacity
the optimal number of hops under the FBL regime becomes
larger than the one under the IBL regime. In particular, the
curve with the most aggressive coding rate r = 2 only lower
than the IBL curve for a small region with short distances,
while the one with a prudential coding rate r = 0.4 always
lower than the IBL curve in the figure.

V. CONCLUSION

In this paper, we investigate the multi-hop relaying perfor-
mance in the FBL regime. Both the target error probability
scenario and the constant coding rate scenario are considered.
We derived the FBL-throughputs under the two scenarios. We
show the performance difference of multi-hop relaying with
FBLs and IBLs through numerical analysis. In addition, we
conclude a set of guidelines for design efficient multi-hop
relaying networks with FBLs: i. The optimal number of hops
under the FBL regime and the IBL regime are different. ii. The
FBL-throughput under the target error probability scenario is
quasi-concave in the target error probability while it is also
quasi-concave in the coding rate under the constant coding
rate scenario. iii. The influences of blocklength on FBL-
throughputs under the two scenarios are different. In particular,
the performance of target error probability scenario is more
sensitive to increasing the blocklength in comparison to the
constant coding rate scenario.
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