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Abstract—In this paper, we consider one-bit output quantiza-
tion of an amplitude bounded input-signal subject to arbitrary
additive noise. Capacity is then represented in various ways, each
demonstrating that finding the optimum quantization threshold
q is an extremely difficult problem. For a class of noise distribu-
tions, of which a typical representative is the uniform distribution,
it is shown that the optimum quantizer is asymmetric. This
contradicts intuition, which for symmetric noise expects the
optimum threshold to be the average of the input distribution.

I. INTRODUCTION AND MOTIVATION

A/D converters often encounter noise whose distribution is
close to the uniform [1]. This gives rise to the question of
how to choose the threshold for a one-bit quantizer in order
to optimize the capacity of the corresponding channel. This is
a fundamental but very difficult question, which as of today
seems to be unsolved in general, see [2], [3].

The general model is quite simple: input variable X with
bounded support is subject to additive noise W of arbitrary
distribution and then quantized to values 1 or 0, depending on
if some threshold q ∈ R is exceeded or not. In formal terms
this reads as

Y = Q(X +W ) with Q(z) =

{
0, if z < q

1, if z ≥ q
.

The system model is depicted in Figure 1.
There is a vast literature on quantization, we only cite

some work which is closely related to our research. Most
papers focus on additive white Gaussian noise with average
power constraints. For this case, the authors [4] show that
for a K-bit quantizer with a precision of log2K bits the
capacity-achieving distribution is discrete with at most K + 1
mass points. This result is refined in the present paper for
the case K = 2 and arbitrary noise distribution. In [2]
it is shown under the same assumptions that the capacity-
achieving distribution is discrete. In [5], one-bit quantization
is considered as an asymmetric channel and optimal threshold
values are determined numerically. The authors [6] investigate
one-bit source quantization. It is shown that for a log-concave
source distribution the optimal quantizer is symmetric about
the origin.

The paper is structured as follows. We first outline that the
optimum peak power constrained input distribution is discrete
and concentrated on two extreme points. Thereafter, structural
properties of the capacity like symmetry, monotonicity and
convexity are summarized. On the basis of these results, as

Fig. 1: The system model: some real input X is subject to
additive noise W and is quantized to yield binary output Y .

the main contribution of this paper, we explicitly determine
the optimum threshold value q? in closed form for uniformly
distributed noise, which against intuition is not the midpoint
between the support points of the capacity-achieving input
distribution. This fact also holds true for any noise distribution
with sufficiently steep slope of the noise density. Finally, we
present some numerical results and compare the asymmetric
quantizer with the symmetric one.

II. NOTATION AND PREREQUISITES

Self-information is denoted as

ρa(q) = −q loga q, q ≥ 0, (1)

and the binary entropy function as

ha(p) = −p loga p− (1− p) loga(1− p)
= ρa(p) + ρa(1− p), 0 ≤ p ≤ 1,

(2)

where a > 1 denotes the base of the logarithm. It is well-
known that both ρa(q) and ha(p) are strictly concave functions
of their arguments q and p, respectively. The first derivatives
of the self-information and the binary entropy function are
obtained as ρ′a(q) = − loga(q e) and h′a(p) = loga( 1−p

p ). We
will use the Kullback-Leibler divergence between (p, 1 − p)
and (q, 1− q), 0 ≤ p, q ≤ 1, denoted by

Da(p‖q) = p loga

(p
q

)
+ (1− p) loga

(1− p
1− q

)
. (3)

When applying the natural logarithm of base e we simply omit
the subscript base.

We assume a discrete-time memoryless channel. Real input
X with cumulative distribution function (CDF) F (x) is subject
to additive noise W with density function ϕ(w) (if exists)
and corresponding CDF Φ(w). X and W are assumed to be
stochastically independent. The noisy signal Z = X + W
is quantized by a binary quantizer Q with threshold q as



Q(z) = 1, if z > q and Q(z) = 0, otherwise. The quantized
output reads, cf. Fig. 1,

Y = Q(X +W ). (4)

Mutual information between input X and output Y is
obtained as, cf. [7],

IX;Y = H(Y )−H(Y | X) (5)

= ha

(∫
Φ(q − x)dF (x)

)
−
∫
ha
(
Φ(q − x)

)
dF (x).

Mutual information is hence a function of the input distribution
F , the noise distribution Φ, and the quantization threshold q.
This motivates the notation IX;Y = I(F,Φ, q).

It is well-known that I(F,Φ, q) is a concave function of
F and a convex function of Φ, cf. [8]. Our main goal in
the present paper is to investigate the difficult optimization
problem

sup
q

sup
F

I(F,Φ, q) (6)

for certain noise distributions Φ.
In case that the input distribution is discrete with m support

points x1, . . . , xm and probabilities p = (p1, . . . , pm), mutual
information (5) may be written as

I(p,γ) = ha

( m∑
i=1

piγi

)
−

m∑
i=1

piha(γi). (7)

where we have used γ = (γ1, . . . , γm) with γi = Φ(q − xi),
1 ≤ i ≤ m.

III. A CLOSED-FORM FORMULA FOR THE
CAPACITY-ACHIEVING INPUT DISTRIBUTION

In [9] we have given an elegant proof that the capacity-
achieving distribution is discrete whenever the noise distribu-
tion is continuous.

Theorem 1. Assume that the noise CDF Φ is continuous.
Then for any continuous input distribution F with bounded
support there exists a discrete distribution Fd with finitely
many support points such that I(F,Φ, q) ≤ I(Fd,Φ, q).

From Theorem 1 it becomes clear that for any given
threshold q the optimum input distribution is discrete with
support points x1 < · · · < xm and probabilities p1, . . . , pm.
Moreover, the capacity-achieving distribution is concentrated
on the extreme points x1 and xm. The corresponding prob-
abilities and the capacity can be determined explicitly, as
is summarized in the following theorem. For a proof of a
modified version see, e.g., [3], [7].

Theorem 2. For any fixed support points x1 < · · · < xm
and any threshold q the capacity-achieving distribution p? is
concentrated on the extreme support points x1 and xm with
probabilities

p?1 =
1− (1 + as)γm

(1 + as)(γ1 − γm)
and p?m =

(1 + as)γ1 − 1

(1 + as)(γ1 − γm)
.

(8)
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Fig. 2: The binary entropy function h, the tangent line at γ̄
and relations to entropy and mutual information.

The corresponding channel capacity is given by

max
p

I(p,γ) = loga
(
1 + as

)
− (s+ t) (9)

with constants

s =
ha(γ1)− ha(γm)

γ1 − γm
and t =

γ1ha(γm)− γmha(γ1)

γ1 − γm
.

(10)

Tedious elementary algebra leads to the following represen-
tations of the capacity as a function of (γ1, γm).

C(γ1, γm) = I(p?,x?, q)

= loga

(
e−

(1−γm)h(γ1)−(1−γ1)h(γm)
γ1−γm + e−

γ1h(γm)−γmh(γ1)
γ1−γm

)
= loga

(
γ1e
− 1−γ1
γ1−γm

D(γm‖γ1)+ (1− γm)e−
γm

γ1−γm
D(γ1‖γm)

)

= loga

(
e

(1−γ1)(1−γm)
γ1−γm

γ1∫
γm

log(γ)dγ

(1−γ)2
+ e

γmγ1
γ1−γm

γ1∫
γm

log(1−γ)dγ
γ2

)
,
(11)

which reveals inherent symmetry properties. Equivalently, we
have a more compact representation as

C(γ1, γm) = ha(γ̄)−
(
γ̄−γm
γ1−γm

ha(γ1) +
γ1−γ̄
γ1−γm

ha(γm)

)
(12)

in which the term

γ̄ = γ̄(γ1, γm) =

(
1 + e

h(γ1)−h(γm)
γ1−γm

)−1
(13)

is used. Note that γ̄ is identical to the solution of h′(γ̄) =
h(γ1)−h(γm)

γ1−γm . By this, the optimum probabilities in (8) may be
written as

p?1 =
γ̄ − γm
γ1 − γm

and p?m =
γ1 − γ̄
γ1 − γm

. (14)

Capacity C(γ1, γm) is depicted as a function of (γ1, γm)
in Figure 3. By formulae (12) and (13) the problem of



(a) 3d-visualization with contour lines (b) Representation by contour lines (top-view)

Fig. 3: Channel capacity C(γ1, γm) from (11) as a function of (γ1, γm).

determining the capacity-achieving input for a fixed threshold
q has an intuitive graphical representation as is shown in
Figure 2.

From the above representation it becomes clear that opti-
mizing capacity with respect to threshold q is an extremely
demanding problem whose solution to the best knowledge of
the authors is unknown. In the next section we determine the
optimum threshold for a certain class of noise distributions, a
typical representative of which is the uniform distribution.

However, C(γ1, γm) possesses a number of useful structural
properties which are summarized in the following theorem and
used later for showing optimality of thresholds for uniform
noise distributions. A detailed proof will be presented in an
accompanying publication.

Theorem 3. Channel capacity C(γ1, γm) as a function of
(γ1, γ2) has the following properties.

a) C(γ1, γm) is symmetric in the sense that C(γ1, γm) =
C(γm, γ1) = C(1− γm, 1− γ1) = C(1− γ1, 1− γm).

b) C(γ1, γm) is a strictly increasing function of γ1 and a
strictly decreasing function of γm, 0 ≤ γm < γ1 ≤ 1.

c) C(γ1, γm) is a convex function of (γ1, γm) ∈ [0, 1]2. It
is even strictly convex whenever γ1 6= γm.

As we have seen so far, for any support points −∞ <
x1 < · · · < xm < ∞ and any fixed threshold q the
capacity-achieving input distribution is only concentrated on
both extreme support points x1 and xm. This allows us to
interpret the one-bit quantizer as a binary asymmetric channel
(BAC). The corresponding transition matrix is given by(

1− Φ(q − xm) Φ(q − xm)
1− Φ(q − x1) Φ(q − x1)

)
, (15)

where the entry in the xth row and the yth column denotes
the conditional probability that y is received when x is sent.
This relationship is shown in Fig. 4. Related early works on
determining the capacity of a BAC are [10]–[15].

IV. OPTIMUM THRESHOLDS ARE ASYMMETRIC FOR
UNIFORM NOISE

In order to find the optimum threshold q, the following
optimization problem must be solved.

max
q∈R

C(γ1, γm)

s. t. γ1 = Φ(q − x1) and γm = Φ(q − xm) .
(16)

We will deal with the case of uniformly distributed noise
with CDF

Φ(w) =


0 , w ≤ u` ,
w−u`
ur−u` , u` < w ≤ ur ,
1 , ur < w ,

(17)

with finite support interval [u`, ur]. By means of Proposition 3
an explicit solution of (16) can be found. Two cases are
considered separately, firstly ur−u` < xm−x1, and secondly
ur − u` ≥ xm − x1. Both cases are summarized in Table I
and II. It is easy to show that for degenerate subcases, where
both Φ(q−x1) and Φ(q−xm) are equal to zero or one, mutual
information is equal to zero, cf. (7).

(a) Density of Z=X+W for a uniformly
distributed noise W with threshold q and
probabilities p1, pm, γm, and 1 − γ1
describing the different areas.

(b) Binary asymmetric chan-
nel with input X , output Y ,
and transition probabilities.

Fig. 4: Input distribution of the quantizer and the correspond-
ing model by a BAC.



TABLE I: Overview of possible cases for a uniform noise
distribution with ur − u` < xm − x1.

range of q Φ(q − x1) Φ(q − xm)

q ≤ u` + x1 0 0

u` + x1 < q ≤ ur + x1
q−x1−u`
ur−u`

0

ur + x1 < q ≤ u` + xm 1 0

u` + xm < q ≤ ur + xm 1 q−xm−u`
ur−u`

ur + xm < q 1 1

We first deal with the case ur−u` < xm−x1. The subcase
Φ(q − x1) = 1 and Φ(q − xm) = 0 obviously yields C(q) =
loga 2 for ur+x1 < q ≤ u`+xm. For u`+x1 < q ≤ ur+x1, it
holds that C(γ1, γm) = C( q−x1−u`

ur−u` , 0). Since γm = 0 is fixed,
we can use Theorem 3 b) to maximize the channel capacity
by maximizing γ1. To maximize γ1 we only need to maximize
q within its boundaries. Hence, the maximum is achieved for
q? = ur + x1 with value C(1, 0) = loga 2.

Analogously, for the subcase u` + xm < q ≤ ur + xm,
the monotonicity property in Theorem 3 b) ensures that
channel capacity is maximum for a minimal γm. Hence,
C(1, q−xm−u`ur−u` ) ≤ C(1, 0) = loga 2 is attained at q? =
u` + xm.

In summary, if ur−u` < xm−x1 then the optimum capacity
C? = loga 2 is attained at any q? ∈ [ur + x1, u` + xm].

Note that the optimal solution is not unique, since the shifted
noise densities do not have overlapping support. From Φ(q?−
x1) = 1 and Φ(q? − xm) = 0 with the aid of (13) and (14),
the optimal probabilities are derived as p?1 = 1

2 and p?m = 1
2 .

TABLE II: Overview of possible cases for a uniform noise
distribution with ur − u` ≥ xm − x1.

range of q Φ(q − x1) Φ(q − xm)

q ≤ u` + x1 0 0

u` + x1 < q ≤ u` + xm
q−x1−u`
ur−u`

0

u` + xm < q ≤ ur + x1
q−x1−u`
ur−u`

q−xm−u`
ur−u`

ur + x1 < q ≤ ur + xm 1 q−xm−u`
ur−u`

ur + xm < q 1 1

We now consider the remaining case ur−u` ≥ xm−x1. By
analogous methods as above the maximum of C( q−x1−u`

ur−u` , 0)
over u` +x1 < q ≤ u` +xm is attained at q? = u` +xm with
value C(xm−x1

ur−u` , 0). On the other hand, if ur+x1 < q ≤ ur+

xm then C(1, q−xm−u`ur−u` ) is maximized at q? = ur + x1 with
value C(1, ur−u`−(xm−x1)

ur−u` ) = C(xm−x1

ur−u` , 0), due to symmetry
in Theorem 3 a).

The subcase u` + xm < q ≤ ur + x1 needs a different
approach. Since the difference Φ(q − x1) − Φ(q − xm) =
q−x1−u`
ur−u` −

q−xm−u`
ur−u` = xm−x1

ur−u` is independent of q, mono-
tonicity arguments do not apply for the channel capacity over
q ∈ [u` + xm, ur + x1]. Convexity of C(γ1, γm) as stated in
Theorem 3 c), however, yields that the maximum is attained at
a boundary point of q. Because of symmetry, cf. Theorem 3 a),

both values of the capacity C( q−x1−u`
ur−u` , q−xm−u`ur−u` ) are equal

at the boundary points q = u` + xm and q = ur + x1 such
that the optimum is attained at each q? ∈ {u`+xm, ur +x1}.
The corresponding capacity coincides with the capacity of the
Z-channel and reads as

C? = loga

(
1 + e

−h(γ
?
1 )

γ?1

)
(18)

with γ?1 = xm−x1

ur−u` . Note that in the case ur − u` ≥ xm − x1
the BAC degenerates to a Z-channel in which one of the input
symbols is always communicated error-free while the other
symbol is communicated with loss (note also the importance
of the erasures-only capacity [16], [17] which is equal to
the Shannon’s capacity for the Z-channel). The corresponding
probabilities are obtained as

p?1 =
γ̄?

γ?1
and p?m = 1− γ̄?

γ?1
(19)

with

γ̄? =
e
−h(γ

?
1 )

γ?1

C?
. (20)

Note that the above approach can be used for other noise
distributions with bounded support to show that the optimal
threshold is asymmetric. Table III lists some examples of noise
distributions with bounded support, which have an asymmetric
optimal threshold q?.

TABLE III: Examples of noise distributions with bounded
support.

Φ(w) support behavior of Φ q?

sin(w) w ∈ [0, π
2

] concave xm

1− cos(w) w ∈ [0, π
2

] convex x1 + π
2√

w
2
, w∈[0,1]

1−
√

2−w
2

, w∈[1,2]
w ∈ [0, 2] – xm

V. NUMERICAL RESULTS

In this section, we present selected numerical results to
provide insight into the channel capacity of the one-bit quan-
tizer. For the following results we consider the case x1 =
−xm = −1 for the signal constellation of the input X , which
corresponds to a constant input power one for any choice of
the symbol probabilities, i.e., E(X2) = p1x

2
1 + pmx

2
m = 1.

We also assume zero-mean uniformly distributed noise W .
The power E(W 2) will be changed by varying the support
to obtain different signal-to-noise ratios SNR = E(X2)

E(W 2) . For
some computations the noise power is set to discrete values
in {10, 1, 12 ,

1
3 ,

1
10}, corresponding to a signal-to-noise ratio

SNR ∈ { 1
10 , 1, 2, 3, 10}. These cases are indicated by colors

red, magenta, green, cyan and blue, respectively. We will
also sometimes consider the signal-to-noise ratio over a whole
interval, e.g., SNR ≤ 10. The base of the logarithm is chosen
as a = 2.



(a) density

(b) distribution

Fig. 5: Density and distribution of uniformly distributed noise
for different noise powers { 1

10 ,
1
3 ,

1
2 , 1, 10}.

Fig. 6: The difference Φ(q − x1) − Φ(q − xm) of the Noise
CDFs as a function of the threshold q for different signal-to-
noise ratios SNR ∈ { 1

10 , 1, 2, 3, 10}.

In Fig. 5 the density ϕ(w) and the distribution function
Φ(w) for the five noise powers are shown. In Fig. 6 the
difference Φ(q − x1) − Φ(q − xm) is plotted to identify
the cases ur − u` < xm − x1, ur − u` > xm − x1 and
ur−u` = xm−x1. For SNR = 10 the case ur−u` < xm−x1
is shown in blue. In contrast, the case ur − u` > xm − x1 is
represented by SNR ∈ { 1

10 , 1, 2} in red, magenta and green
colors, respectively. The case ur − u` = xm − x1 is attained
for SNR = 3 and depicted in cyan.

The contours of the capacity C(γ1, γm) in the region
(γ1, γm) ∈ [0, 1]2, cf. (11), along with the trajectories
(γ1, γm) =

(
Φ(q−x1),Φ(q−xm)

)
, q ∈ (−∞,∞), are plotted

in Fig. 7. Note that on the diagonal line between (0, 0) and
(1, 1) the capacity is zero while on the corners (0, 1) and
(1, 0) the capacity is equal to loga 2. All trajectories start at
(0, 0) for q 7→ −∞ and end in (1, 1) for q 7→ ∞. Each
trajectory remains parallel to the coordinate axes until the
maximum capacity is attained, which is marked by a circle in
corresponding color. Then each trajectory runs diagonal to a
circle on the perpendicular side of the region, where again the
maximum capacity is attained. Departing from the circles in
either direction on the trajectory decreases the capacity. From
the second circle each trajectory again remains parallel to the
coordinate axes. In the case ur − u` ≤ xm − x1 both circles
are degenerated to a single circle, that is located on the corner
of the region (the cyan circle lies within the blue circle). The
behavior of the capacity as a function of the threshold q can
also be read from Fig. 8. For q = qc = µ+x1+xm

2 the quantizer

Fig. 7: Capacity contours together with trajectories of uni-
formly distributed noise for different signal-to-noise ratios
SNR ∈ { 1

10 , 1, 2, 3, 10}.

becomes symmetric which corresponds with a BSC, where qc
is the centroid of the capacity curves. For this choice of the
threshold (here qc = 0) the capacity attains a local minimum.
The difference of the capacities C(q?) − C(q = qc) seems
to be large in the region where the signal-to-noise ratio is
intermediate. This region is the most relevant for optimizing
the threshold q in practice.

It is interesting to see that the maximum capacity of loga 2
is attained for SNR = 3 ≈ 4.77dB and for any further increase
of the signal-to-noise ratio the capacity will remain constant.

Fig. 8: The capacity C(q) for uniformly distributed noise as a
function of the threshold q for different signal-to-noise ratios
SNR ∈ { 1

10 , 1, 2, 3, 10}.



(a) logarithmic

(b) linear

Fig. 9: Optimal threshold q? over the signal-to-noise ratio on
a logarithmic and linear scale.

We will highlight this signal-to-noise limitation by a thin black
vertical line in the following.

To obtain deeper insight we calculate the optimal threshold
q? along with γ?1 = Φ(q?−x1) and γ?m = Φ(q?−xm) as q? =
1−
√

3/SNR, γ?1 =
√

SNR/3 and γ?m = 0. Note that another
optimal value for all q, γ1 and γm exist, which we neglect to
consider because of the symmetry. From these optimal values
we in addition can determine C(q?), p?1, p?m and γ̄? as given
by (18)–(20), which are still complicated equations. It is easy
to show that for SNR 7→ 0 we obtain the approximations

γ̄? ' 1
e

√
SNR
3 , (21a)

p?1 ' 1
e + e−2

2 e2

√
SNR
3 , (21b)

p?m ' 1− 1
e −

e−2
2 e2

√
SNR
3 , (21c)

C(q?) ' loga e
e

√
SNR
3 . (21d)

For SNR 7→ 3 we similarly obtain the approximations

γ̄? ' 1
2 −

1−
√

SNR
3

4

(
1− log

(
1−

√
SNR
3

))
, (22a)

p?1 ' 1
2

√
3

SNR −

√
3

SNR−1

4

(
1− log

(
1−

√
SNR
3

))
, (22b)

p?m ' 1− 1
2

√
3

SNR +

√
3

SNR−1

4

(
1− log

(
1−

√
SNR
3

))
,

(22c)

C(q?) ' loga 2 +
1−

√
SNR
3

2 loga

(
1−

√
SNR
3

e

)
. (22d)

In Fig. 9 the optimal thresholds q? over the signal-to-noise
ratio SNR are shown. The optimal threshold is a hyperbolic
function over the whole range of the signal-to-noise ratio
except of SNR > 3. For SNR > 3 the optimal threshold can be
chosen arbitrarily between 1 −

√
3/SNR and

√
3/SNR − 1.

The behavior for SNR > 3 can be better recognized on a
logarithmic scale.

Fig. 10 shows the optimal values γ?1 , γ̄? and γ?m over the
signal-to-noise ratio if q? = 1 −

√
3/SNR is selected. As

stated in (21), the value γ̄? converges for SNR 7→ 0 to γ?1 up
to a constant factor. Furthermore, the slope of γ?1 at SNR = 0
is infinite due to the square root. This behavior has a positive
effect on the capacity gain as we will see later.

(a) logarithmic

(b) linear

Fig. 10: Optimal values γ?1 , γ̄? and γ?m over the signal-to-noise
ratio on a logarithmic and linear scale.



(a) logarithmic

(b) linear

Fig. 11: Optimal input-probabilities p?1 and p?m over the signal-
to-noise ratio in logarithmic and linear scale.

In Fig. 11 the optimal input probabilities over the signal-
to-noise ratio are shown. It is interesting that the variation
range of the probabilities is bounded by 1

e and 1
2 . For p?1 the

lower bound is attained as SNR 7→ 0 while the upper bound
is achieved as SNR 7→ 3, see (21) and (22).

Finally, the optimal capacity is depicted over the signal-to-
noise ratio in Fig. 12. As can be seen the maximum increase
of capacity occurs as SNR 7→ 0, since the curve is concave
in this region. In addition, the capacity C(qc) of the centroid
qc is shown at which the capacity attains a local minimum.
As mentioned before, the difference between them is large for
mid-range values of the signal-to-noise ratio. This difference
reinforces that optimal one-bit quantizers are asymmetric for
additive uniform noise.

In Fig. 13, the density at the input Z = X + W of the
quantizer for an optimal constellation of the input signal X
with probabilities p?1 and p?m along with the position of the
optimal threshold q? for two different signal-to-noise ratios
SNR ∈ { 1

10 , 3} is depicted. For the choice q? = 1−
√

3/SNR
the symbol x1 = −1 has a lower probability of occurrence
than xm = +1, i.e., p?1 < p?m for all SNR < 3. Due to the

(a) logarithmic

(b) linear

Fig. 12: Optimal capacity C(q?) and the capacity C(qc) of
the centroid over the signal-to-noise ratio in logarithmic and
linear scale.

Fig. 13: Density at the input Z = X+W of the quantizer for
optimal constellation of the input signal X with probabilities
p?1 and p?m along with the position of the optimal threshold q?

for two different signal-to-noise ratios SNR ∈ { 1
10 , 3}.



position of q?, a transmitted symbol xm is always received
error-free while symbol x1 may be erroneously decoded as
xm at the output of the quantizer. This demonstrates the
importance of the Z-channel as a reasonable transmission
model whenever the noise has bounded support.

VI. CONCLUSION

In this paper, we have considered the one-bit output quan-
tization of an amplitude bounded input-signal subject to
arbitrary additive noise. Capacity has been represented in
various ways, each demonstrating that finding the optimum
quantization threshold q? is an extremely difficult problem. For
the class of uniform noise distributions, it has been shown that
the optimum quantizer is asymmetric and the optimal threshold
can be determined in closed-form. By numerical investigations
we have also compared the optimal asymmetric quantizer with
the symmetric one for obtaining detailed information about the
loss in capacity.
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