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Abstract—In this paper we present optimal power allocation,
together with optimal linear signal fusion, considering a passive
distributed radar sensor network system. The goal of a passive
distributed radar is to obtain a reliable estimation from a source
signal, by collecting and combining the individual observations
from the network of sensor nodes (SN)s in a fusion center (FC). In
this respect, a linear minimum-mean-square-error (MMSE) opti-
mization strategy is considered, where optimal linear operation at
the SNs as well as the FC are obtained analytically. The obtained
solutions are then analytically and numerically compared to the
previously studied unbiased linear MMSE (ULMMSE) approach.
It is observed that both schemes share the same strategy for
the optimal power allocation among the SNs, but differ in the
corresponding linear fusion. As expected, the proposed approach
reaches a lower estimation MSE compared to the ULMMSE one.

Index Terms—Wireless Sensor Network, Distributed Radar,
MMSE Estimation.

I. INTRODUCTION

Nowadays, many applications benefit from the idea of

distributed sensor networks for the purposes of observation

and communication. The range of these applications cov-

ers health care, traffic monitoring, radio astronomy, particle

physics, and military applications [1], [2]. In particular, the

goal of a distributed passive radar is to provide a reliable

estimation from a source signal, by collecting and combining

the individual passive observations from a network of SNs in

a centralized node, i.e., FC. As an interesting example, we

can mention the ’IceCube Neutrino Observatory’ at the south

pole, where a network with more than 5000 SNs is deployed to

observe certain characteristics of sub-atomic particles [3]. In

this respect, problems regarding the optimal power allocation

among the SNs and the energy-aware system design are of

interest, generally due to the weak and distributed nature

of the SNs, see [1], [4]–[6], and the references therein. In

particular, an optimal design of the linear system operation is

presented in [1], [7]–[10], employing a ULMMSE optimiza-

tion framework. The aforementioned works are then extended

following a similar optimization strategy, with the consid-

eration of network lifetime and energy efficiency [11]–[14],

distributed beamforming among the SNs [15], and occasional

node failure and network data inaccuracy [16]. For the sources

with strictly non-circular distribution, the gains of a widely

linear processing at the SNs, or at the FC is studied in [17].

In this work we extend the proposed designs in [1], [7],

[8], which are presenting a ULMMSE approach, to a general

linear MMSE (LMMSE) optimization framework. While the

imposition of an unbiasedness constraint into the optimization

framework is usually favorable for classification applications,

an LMMSE approach is widely used for estimation of e.g.,

noise powers, signal spectrum, fluctuation of temperature,

radiation intensity, see [18]. The wide range of applications re-

inforces the investigation and comparison of both approaches,

i.e., ULMMSE and LMMSE, within the framework of radar

sensor networks. In particular, we present an optimal linear

signal fusion, as well as the optimal power allocation among

the SNs. The enhanced estimation accuracy, corresponding to

the reduced MSE is analytically observed. At the end, the pro-

posed design is compared to the available ULMMSE solution

for different network conditions via numerical simulations.

Mathematical Notations:

Throughout this paper, we denote the sets of complex, real,

real and non-negative (non-positive) numbers by C, R, R+

(R−), respectively. The absolute value, square root, complex

conjugation, mathematical expectation, and partial derivative

are respectively denoted as | · |, √·, (·)∗, E{·}, ∂(·). The nota-

tion c̄ stands for the value of an optimization variable c where

the optimum is attained. The set FK is defined as {1, . . . ,K}.

II. SYSTEM MODEL

We investigate a network of K amplify-and-forward (AF)

passive SNs, cooperating to achieve a single global observation

via the FC, see Fig 1. Both communication and sensing

channels (frequency-flat fading) are assumed to be wireless

and static during the observation process. The final goal of

each observation is to estimate a source signal r ∈ C, at

the FC. Each observation can be segmented into three parts:

sensing, communication, and information fusion. The detailed

function of each SN is discussed in [1, Section II].

A. Operation of SNs

If a source signal r ∈ C is present, each SN receives

and amplifies the incoming signal using an amplification

coefficient uk ∈ C. The communication with FC is performed

by using orthogonal waveforms for each SN so that the data

from different SNs can be separated and processed at the FC1.

1Note that the assumed SN operation fits for the network of SNs with weak
processing/cooperation capability, where coordinated transmission schemes,
e.g., distributed beamforming schemes, are not feasible, see [19].



Fig. 1: A passive distributed radar sensor network with K SNs.

The process of each SN can be hence described as

xk := (gkr +mk)uk, k ∈ FK , (1)

and

Xk := E{|xk|2} =
(
R|gk|2 +Mk

) |uk|2, (2)

where R := E{|r|2} represents the power of the source signal.

The sensing channel coefficient, the transmit signal from the

SN with index k and its power are respectively denoted by

gk ∈ C, xk ∈ C and Xk. The additive white Gaussian

noise (AWGN) on the sensing process and its variance are

respectively denoted as mk ∈ C and Mk ∈ R+. Furthermore,

it is assumed that the power consumption of each SN may

not exceed a certain limit, namely Pk, where the total average

power consumption of the network is limited by Ptot:

Xk ≤ Pk, k ∈ FK ,
∑
k∈FK

Xk ≤ Ptot. (3)

B. Fusion Center

The transmitted signal from each SN passes through the

communication channel, with coefficient hk ∈ C, and arrives

at the FC combined with an AWGN component nk ∈ C, with

variance Nk ∈ R+. A linear combination rule with weights

vk ∈ C is then applied at the FC to achieve an estimate, r̃,

from the observed source signal. This is described as

r̃ := r
∑
k∈FK

vkhkukgk +
∑
k∈FK

vk (hkukmk + nk) . (4)

where r̃ represents the estimated source signal at the fusion

center.

C. Remarks

In the present work, we assume the availability of perfect

channel information for both sensing and communication

channels. In general, it is rather difficult to estimate the sensing

channel in an accurate way unless the channel has a highly

stationary nature, see, e.g., [3]. In this respect the sensitivity

of the resulting estimation accuracy, via the utilization of

the proposed design, to the channel knowledge inaccuracy is

numerically studied in Section IV. Moreover, for the scenarios

where the sensing channel is not perfectly known, the results

of this paper can be treated as theoretical limits.

III. OPTIMAL LMMSE SOURCE SIGNAL ESTIMATION:

LINEAR SIGNAL FUSION AND POWER ALLOCATION

In this part we obtain the optimal set of the fusion weights

vk, as well as the amplification coefficients uk, which result

in the minimum estimation mean-square-error (MSE) of the

source signal at the FC. Following (4), the estimation MSE is

formulated as

E{|r̃ − r|2} =

R
∣∣∣−1+

∑
k∈FK

vkhkukgk

︸ ︷︷ ︸
=:W

∣∣∣2+∑
k∈FK

|vk|2
(
Nk+|hkuk|2Mk

)
︸ ︷︷ ︸

=:V

, (5)

as the noise and source signals are all zero-mean and mutually

independent. Note that the term V represents the part of the

estimation MSE resulting from the zero-mean noise compo-

nents, similar to that of [1, Eq. (10)], while the additional term

R|W |2 represents the part resulting from the estimation bias.

The corresponding LMMSE optimization is formulated as

minimize
uk,vk,k∈FK

V +R|W |2, s.t. (3), (6)

where (3) imposes the individual, and collective power con-

straints on the SNs. It is observable that (6) is not a jointly

convex optimization problem. Nevertheless, it is separately

convex over the amplification coefficients, i.e., uk, and the

fusion weights, i.e., vk. In the following we obtain the optimal

fusion weights for a fixed set of uk.

A. Optimal LMMSE Fusion

It is observed from (3) that the power constraints are

invariant to the choice of vk. As a result, the corresponding

optimization turns into an un-constraint minimization of a

convex function

minimize
vk,k∈FK

V +R|W |2. (7)

Due to the convex, non-negative, and differentiable nature of

the objective, the optimal fusion coefficients are necessarily

(and sufficiently) located at the stationary points. This is

formulated, following the guidelines of Wirtinger calculus on

complex-valued differentiation [20], [21], as

∂

∂vk

(
V +R|W |2) = 0 ⇔

RW ∗hkukgk + v∗k(Nk + |hkuk|2Mk) = 0, (8)

which results in

v̄k = −WR
h∗
kg

∗
ku

∗
k

Nk + |hkuk|2Mk
. (9)

Moreover, by recalling (8), and the fact that∑
k∈FK

(
h∗
kg

∗
ku

∗
k

Nk + |hkuk|2Mk

)
∂

∂vk

(
V +R|W |2) = 0, (10)

we have∑
k∈FK

RW ∗ |hkgkuk|2
Nk + |hkuk|2Mk

+
∑
k∈FK

h∗
kg

∗
ku

∗
kv

∗
k = 0, (11)



and consequently from (5) it follows that

W̄ = −
(
1 +R

∑
k∈FK

|hkgkuk|2
Nk + |hkuk|2Mk

)−1

, (12)

which also concludes that W̄ ∈ R−. Moreover, from (12), we

have

v̄k=

(
1

R
+
∑
k∈FK

|hkgkuk|2
Nk + |hkuk|2Mk

)−1
h∗
kg

∗
ku

∗
k

Nk+|hkuk|2Mk
, (13)

which presents a closed form expression for the optimal fusion

coefficients, given a fixed (and feasible) set of uk. Similar to

the previous steps, and considering∑
k∈FK

vk
∂

∂vk

(
V +RW 2

)
= 0, (14)

we have∑
k∈FK

RWhkgkukvk+
∑
k∈FK

|vk|2
(
Nk+|hkuk|2Mk

)
=0, (15)

and consequently it follows that

V̄ = −RW̄ (W̄ + 1). (16)

Moreover from (5) we obtain ¯MSE = −RW̄ , which results in

¯MSE =

(
1

R
+

∑
k∈FK

|hkgkuk|2
Nk + |hkuk|2Mk

)−1

, (17)

where V̄ , ¯MSE respectively represent the obtained values of

V and the estimation MSE, via the application of the optimal

fusion coefficients (13).

B. Optimal Linear SN Operation: Power Allocation Problem

For a fixed set of uk, the results in (13) and (17) respectively

represent the optimal linear fusion, and the corresponding

MSE value. The remaining task is hence to find a set of uk,

that minimizes the resulting ¯MSE, while satisfying the power

constraints defined in (3). This is formulated as

minimize
uk, k∈FK

¯MSE, s.t. (3). (18)

Note that the phase of the amplification coefficients uk do not

have an effect on the resulting ¯MSE, as it is apparent from

(17)2. Consequently we assume uk ∈ R+, withought loss of

generality. By formulating uk =
√

Xk

R|gk|2+Mk
, as a result of

(1) and (2), the above problem can be equivalently formulated

as

maximize
Xk∈R+,k∈FK

∑
k∈FK

α2
kXk

Xk + β2
k

(19a)

s.t.
∑
k∈FK

Xk ≤ Ptot, Xk ≤ Pk, k ∈ FK , (19b)

2This is grounded in two reasons. Firstly, the phase of uk does not impact
the power consumption at the corresponding SN, and hence does not impact
the power constraints (3). Secondly, any phase of uk is eventually canceled
out by the phase of the optimally-chosen fusion coefficients vk , and will not
impact the resulting estimate r̃, see (4) in connection with (13).

where αk :=
√

|gk|2
Mk

, and βk :=
√

Nk(R|gk|2+Mk)
Mk|hk|2 are formu-

lated similar to [1, Eq. (22), (23)]. Interestingly, the problem

of optimizing the amplification coefficients (19) coincides with

the studied similar problem for ULMMSE scheme, which

results in a water-filling solution structure. For an analytical

optimum solution to (19), and further elaborations see [1,

Eq. (35)] or [16, Eq. (20)].

C. Observations: Best LMMSE vs. ULMMSE Estimators

In this part we observe the impact of the proposed LMMSE

design, compared to the previously studied ULMMSE case.

1) Optimum amplification and power allocation: It is ob-

served from (19) that the proposed LMMSE approach results

in a similar optimum power allocation solution as to the

studied ULMMSE case, see (19) in comparison with [1,

Eq. (21), (46)]. This shows that the quality of the SNs, in terms

of the allocation of the available resources, do not depend

on the estimation strategy but on their channel and noise

conditions. Furthermore, it enables the FC to customize the

appropriate fusion strategy to a specific application, with no

need to adapt the optimal operation of the SNs3.

2) Estimation Accuracy: As expected, the resulting esti-

mation MSE via the utilization of the LMMSE estimator is

always smaller in comparison with the unbiased case, see (17)

in comparison with [1, Eq. (21)]. In particular, the resulting

estimation accuracy in terms of R/MSE can be directly

compared as4:

R/ ¯MSE = 1 +R
∑
k∈FK

|hkgkuk|2
Nk + |hkuk|2Mk

= 1 +R/MSEunbiased, (20)

verifying the known ULMMSE-LMMSE performance gap

[22], where MSEunbiased represents the resulting estimation

MSE via the application of the optimum ULMMSE fusion,

see (17) and (12) in comparison with [1, Eq. (21)]. Please note

that there is no closed form expression for the final MSE after

the utilization of the jointly optimal uk, vk, due to the water-

filling optimal solution structure for uk. Nevertheless, as both

schemes result in the same optimal choice of the amplification

coefficients, this gap holds for the jointly optimal choice of

uk, vk, as well.

IV. SIMULATION RESULTS

In this part we evaluate the performance of the proposed

estimator, in comparison to the studied ULMMSE estimator

in [1], [7], via numerical simulations. Fig. 2 represents the sim-

ulated setup, where a network of 12× 12 nodes is simulated.

Small circles, triangular, and rectangular shapes respectively

represent the SNs, the source and FC locations. The distance of

3An interesting use case can be a hybrid usage of LMMSE and ULMMSE
strategies at the FC. In this case the ULMMSE can be used for detecting
the presence of a source, and once the source is known to be present, the
LMMSE fusion can be used to obtain a lower MSE. As mentioned, the optimal
operation of the SNs remains the same for both cases.

4The ratio R/MSE compares the variance of the (to be estimated) source
signal, i.e., R, to the estimation MSE.



Fig. 2: The simulated setup: small circles, triangular, and rectangular

shapes respectively represent the SNs, the source and FC locations.

−70 −60 −50 −40 −30 −20 −10 0 10 20 30
−60

−40

−20

0

20

40

60

80

Nk [dB]

M
S
E

[d
B
]

LMMSE
ULMMSE
LMMSE−A
ULMMSE−A

Fig. 3: Estimation MSE vs. Mk = Nk. Estimation accuracy degrades

as noise variance increases.
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Fig. 4: Estimation MSE vs. R. Estimation MSE increases as source

signal variance increases.

two adjacent nodes is 1 meter. All sensing and communication

channel coefficients are generated with zero-mean complex

Gaussian distribution. The variance of the channel coefficients

between each two nodes is determined as d−ζ , where d
represents the distance, and ζ is the path loss exponent. The

default values for the network parameters is presented in

Table I. For each set of the channel realizations, i.e, hk, gk, the

resulting uk, vk are calculated via the best ULMMSE [1], and
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Fig. 5: R/MSE vs. Mk = Nk. Estimation accuracy degrades as

noise variance increases.
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Fig. 6: R/MSE vs. R. Estimation accuracy degrades as source signal

strength increases.
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Fig. 7: MSE vs. θ. Estimation accuracy degrades as as CSI accuracy

degrades.

the proposed LMMSE estimation strategies. Afterwards, 1000

realizations of r, nk,mk are generated in order to evaluate the

resulting estimation MSE. The resulting MSE is then averaged

over 1000 channel realizations. The legends ULMMSE and

LMMSE represent the aforementioned numerically evaluated



TABLE I: Default Values

R Pk Ptot ζ Mk Nk

1 1 10 3 0.1 0.1

performance, while the legends LMMSE-A and ULMMSE-

A represent the analytically obtained MSE respectively from

(17) and [1, Eq. (21)].

In Fig. 3 and Fig. 4, the resulting estimation MSE is

illustrated for different noise levels Mk = Nk, and target

signal power, i.e., R. It is observed that the analytically

expected performance is accurately followed by the numerical

evaluations. Moreover, while the increase of noise intensity

increases the resulting MSE for both schemes, the LMMSE

shows a higher robustness as the noise level increases.

In Fig. 5 and Fig. 6 the resulting estimation accuracy, in

terms of R/MSE is illustrated for the similar schemes as in

Fig. 3 and in Fig. 4. The analytically obtained constant gap in

(20) is observed between the best LMMSE and the ULMMSE

estimators.

In Fig. 7 the sensitivity of the proposed estimators to the

channel estimation error is studied. The channel uncertainty is

modeled as g̃k = gk + δk, and h̃k = hk + εk, where g̃k, h̃k

are the estimated versions of the sensing and communication

channels, and δk, εk are estimation errors, modeled as zero-

mean complex Gaussian random process, with variance θ5.

It is observed that the resulting estimation MSE converges

to the analytically expected values as the error variance is

small, while converging to 0 [dB] as θ increases. Moreover,

the resulting performance enjoys a higher level of robustness

for a system with a relatively higher noise level, which is

commonly the case for the distributed SN systems. Conversely,

as the noise variance decreases, a higher sensitivity is observed

and hence a better estimation accuracy is required.

V. CONCLUSION

In this paper the optimal linear signal fusion, as well as

the power allocation on the SNs is obtained for a network

of distributed passive radar system, following an LMMSE

approach. It is observed that the optimal power allocation

on the SNs coincides with that of the studied ULMMSE

approach. Nevertheless, the obtained optimal signal fusion in

the LMMSE case reaches a lower level of the estimation MSE,

as expected. Moreover, it is observed that the channel esti-

mation inaccuracy degrades the performance of the proposed

design. Nevertheless, this error can be better tolerated for a

system with high noise level, which is usually the case for the

distributed sensor network systems.
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