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Abstract

In this work, motivated by emerging low-latency applications, we consider an amplify-and-forward relaying network operating
with finite blocklength (FBL) codes subject to delay quality of service (QoS) constraints. Hence, we address both transmission
delay (via FBL codes) and queueing delay (via delay QoS requirements). We first derive the QoS-constrained throughput of the
network. Subsequently, we state a resource allocation problem aiming at allocating the power between the source and the relay
to maximize the throughput. The convexity of the problem is proved and the optimal power allocation policy is provided. Via
simulations, we confirm the accurateness of our analytical model. In addition, we provide interesting insights on the system behavior
by characterizing the impact of the error probability, the QoS-exponent and coding blocklength on the throughput performance.
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I. INTRODUCTION

In wireless communications, cooperative relaying [1]–[4] is a promising technique to improve the wireless transmission
performance by exploiting spatial diversity and providing better channel quality. Specifically, two-hop amplify-and-forward
(AF) relaying protocols significantly improve the throughput and quality of service [5]–[7]. However, typically these studies
on the advantage of relaying are performed under the ideal assumption of communicating arbitrarily reliably at Shannon’s
channel capacity, i.e., codewords are assumed to be infinitely long, which can be prohibitive in low-latency applications with
deadline requirements.

In the finite blocklength regime, the data transmission is no longer arbitrarily reliable. Especially when the blocklength is
short, the error probability (due to noise) becomes significant even if the rate is selected below the Shannon limit. Taking this into
account, an accurate approximation of the achievable coding rate under the finite blocklength assumption for an additive white
Gaussian noise (AWGN) channel was derived in [8] for a single-hop transmission system. Later on, a tighter approximation
is provided in [9] with a third-order term. In addition, the initial work for AWGN channels was extended to Gilbert-Elliott
channels [10] as well as quasi-static fading channels [11]–[13], quasi-static fading channels with retransmissions [14], [15],
spectrum sharing networks [16] as well as transmissions with packet scheduling [17], [18]. It is shown in these works that
the finite blocklength performance of a single-hop transmission is determined by the coding rate, error probability and code
blocklength. In particular, the performance loss due to the additional decoding errors at finite blocklength is considerable and
increases as the blocklength decreases. Also, if the channel and the blocklength are fixed, the error probability of the single-
hop transmission is strictly increasing in the coding rate. In our previous work [19]–[23], we extended Polyanskiy’s model
of single-hop transmission to the relaying network, in which the relay halves the distance to provide a power gain but at the
same time also halves the blocklength of the transmission. In particular, general analytical models of the physical-layer finite
blocklength (FBL) performance [20], [21] and QoS-constrained performance [22], [23] of DF relaying networks are derived.
However, all the above studies regarding the FBL performance of relaying are conducted under the assumption of decode and
forward relaying. To the best of our knowledge, the FBL performance and optimal operation in AF relaying networks have
not been addressed thus far.

In this work, we focus on an AF relaying network subject to delay QoS constraints and derive the FBL performance. In
addition, we identify the optimal power allocation between the source and the relay to maximize the QoS-constrained FBL
throughput. In particular, we first formulate a power allocation problem, then show its convexity and finally solve the problem.
Moreover, we validate our analytical model and further investigate the throughput performance of the network via Monte Carlo
simulations.

The rest of the paper is organized as follows. In Section II, we provide our system model and introduce the metric adopted
to measure the QoS-constrained performance of the AF network. In Section III, we derive the QoS-constrained FBL throughput
of AF relaying and state the optimization problem. We show the convexity of the problem and provide a solution in Section IV.
Finally, we present our numerical results in Section V and conclude the work in Section VI.
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II. PRELIMINARIES

In this section, we first describe our system model. Subsequently, the statistical queuing constraints are briefly discussed
and reviewed.

A. System model
We consider a simple scenario with a source S, a destination D and a relay R as schematically shown in Fig. 1 below.

Time is divided into frames with length 2m (symbols), each frame is further divided into two phases which are referred to as
backhaul phase and relaying phase. The relay is assumed to operate in an AF mode. In particular, the source sends a signal
with data block to the relay. Afterwards, the relay amplifies and forwards the received signal (with noise) to the destination.
Hence, the lengths of the backhaul phase and the relaying phase (therefore their coding blocklengths) are required to be the
same, i.e., the blocklength of both the backhaul phase and the relaying phase is m1 = m2 = m.

Source Relay Destination

h1 h2

Backhaul link Relaying link

Fig. 1. Example of the considered relaying scenario.

We consider complex channels and denote the channel fading coefficients of the S-R backhaul link and the R-D relaying
link by h1 and h2, respectively. We assume perfect channel state information (CSI) at the receivers and in particular at the
source. In addition, the transmit power levels at the source and the relay are denoted by p1 and p2, respectively. Hence, for
AF relaying the signals at the relay and the destination are given, respectively, by

y1 =
√
p1h1x + n1, (1)

y2 =
√
p2h2(

√
p1h1x + n1) + n2. (2)

The transmitted signal x and received signals y1 and y2 are m-dimensional vectors. Furthermore, nk, k = 1, 2 represents the
Gaussian noise vector nk∼N

(
0, σ2Im

)
, where Im denotes an m×m identity matrix. Denote by z1 and z2 the instantaneous

channel gains of the backhaul and relaying links, i.e., z1 = |h1|2 and z2 = |h2|2. Then, the SNR of received signal at the AF
relay is γ1 = p1z1

σ2 while the SNR at the destination is given by

γ2 =
p1p2z1z2

σ2 (1 + p2z2)
. (3)

Moreover, a total power constraint is considered1, given by p1 +p2 = ptot, while the average transmit power of the two-hop
relaying is ptot/2. Finally, the AF relay network is expected to support the transmission of the source node under certain QoS
requirements related to reliability guarantees and queuing constraints.

B. Statistical queuing constraints
Throughout this paper, we assume that the transmissions to the destination are performed under queuing constraints, which

require the buffer overflow probabilities to decay exponentially fast [24]. Let us denote Q as the stationary queue length and
θ as the decay rate of the tail of the distribution of the queue length Q. Then, the probability that the queue length Q exceeds
a threshold q satisfies

P (Q ≥ q) ≈ ςe−θq, (4)

where ς is probability of non-empty buffer. In addition, θ is called the QoS exponent, and is defined in [25] as

lim
q→∞

logP (Q ≥ q)
q

= −θ. (5)

Note that small and large θ correspond to relatively loose and strict QoS constraints, respectively. More specifically, QoS
exponent θ controls the exponential decay rate of the buffer overflow probability. Thus larger θ indicates stricter limitation on
the buffer overflow probability, leading to more stringent QoS constraints, and vice versa for small θ.

According to [24], the effective capacity in bits/frame is given by

RE(θ) = −Λc (−θ)
θ

, (6)

where Λc (θ) = lim
t→∞

logE{eθ
∑t
k=1 ck} denotes the asymptotic logarithmic moment generating function (LMGF) of the random

process ck, which describes the instantaneous transmission rate in our setting. The effective capacity characterizes the maximum
constant arrival rate that can be supported by the link with a random service process while satisfying (4).

1Note that while the source and relay nodes can have separate power sources, jointly deciding on the power levels subject to a total power constraint
improves the throughput performance along with the power efficiency of the relay network.
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In this work, we adopt the effective capacity formulation to obtain the QoS-constrained throughput in the considered AF
relaying network with FBL codes.

III. AF RELAYING WITH QOS CONSTRAINTS: FBL THROUGHPUT AND OPTIMAL POWER ALLOCATION

A. Throughput of AF relaying with target error probability

Note that we consider an AF relaying network with queuing and reliability constraints described by a QoS exponent θ and
a target error probability ε, respectively. First of all, the coding rate should be adapted according to instantaneous channel
fading to guarantee the target error probability ε. According to the results in [9], the relationship between the coding rate and
error probability is given by

r = R (γ, ε,m) = log(1 + γ)− log e

√
γ(γ + 2)

(γ + 1)
2
m
Q−1 (ε)

+
logm

m
+
o(1)

m
,

(7)

where Q (x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function. In other words, the instantaneous departure rate in bits/block
from the source buffer of each frame is rm with probability 1−ε, while with probability ε the departure rate is zero. Then, the
LMGF of the random departure is given by ln

{
Ez1,z2

[
e−θmr(1−ε)+ε

]}
. Finally, the QoS-constrained FBL throughput (i.e.,

effective capacity) in bits/symbol in this scenario is given by

RE =− 1

2m

Λc (−θ)
θ

=− 1

2mθ
ln
{
Ez1,z2

[
e−θmr(1−ε)+ε

]}
.

(8)

Obviously, both the coding rate r and throughput RE are influenced by the choice of power allocation p1 and p2.

B. Power allocation problem statement

Recall that we consider an AF relaying network with QoS constraints, i.e., the delay QoS exponent θ and target error
probability ε. Our objective is to maximize the throughput RE in bits/symbol. In addition, the service to the destination
requires a basic guarantee that the channel states of the two hops are sufficiently good. This requirement in terms of received
SNR at the destination is reflected by the condition that γ2 ≥ γth ≥ 0 dB, while the equivalent requirement in terms of coding
rate is r ≥ R (γth, ε,m). On the other hand, due to the randomness of the channel fading, it is possible that the maximal
SNR over power allocation is still not enough, i.e., γ◦2 = max

p1+p2=ptot
γ2 ≤ γth. In such a case, we simply skip this frame, i.e.,

allocate zero power for both the relay and the source in this frame.
Based on the above analysis, the problem of optimally allocating power among the source and the AF relay is stated as

follows:
max

(p1,p2)∈Ω
RE(p1, p2)

s.t. : p1 + p2 = ptot,
(9)

where Ω is the feasible set of (p1, p2), given by

Ω=

{
(p1, p2) = (0, 0) case γ◦2 < γth,

(p1, p2) ∈ (0, ptot)
2

case γ◦2 ≥ γth.
(10)

IV. OPTIMAL POWER ALLOCATION

In this section, we characterize the an optimal power allocation policy by solving the optimization problem in (9). In the
following, we show the convexity of Problem (9). We start with a proposition regarding the coding rate.

Proposition 1. Consider AF relaying with target error probability ε ≥ 10−27 and blocklength m ≥ 100. Under the SNR
constraint γ2 ≥ 0 dB and a given power constraint ptot, i.e., p1 + p2 = ptot, the instantaneous coding rate r is strictly
increasing and concave in γ2 and concave in p2.

Proof: Let ϕ = Q−1 (ε)
√

1
m . Then, according to (7), we have the first order derivative of r with respect to the SNR γ2

given as
∂r

∂γ2
=

log e

1 + γ2
− ε log e√(

1− 1
(1+γ2)2

) 1

(1 + γ2)
3 . (11)
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It clearly holds that ∂r
∂γ2

> 0 when γ2 ≥ 1 = 0 dB. Then, the second order derivative is given by

∂2r
∂γ22 =− log e

(1+γ2)2
+ ϕ log e

2
(

1− 1
(1+γ2)2

)3
2

1
(1+γ2)6

+ ϕ log e√(
1− 1

(1+γ2)2

) 3
(1+γ2)4

= − log e
(1+γ2)2

+ ϕ log e

2((1+γ2)2−1)
3
2

1
(1+γ2)3

+ ϕ log e√
(1+γ2)2−1

3
(1+γ2)3

= log e
(1+γ2)3

{
− (1 + γ2) + ϕ

2(γ22+2γ2)
3
2

+ 3ϕ√
γ22+2γ2

}
.

(12)

When ε ≥ 0.5, we have ϕ ≤ 0. Then ∂2r
∂γ22 < 0. On the other hand, when ε < 0.5, ∂2r

∂γ22 is increasing in ϕ and therefore
decreasing in ε and m. For an extreme scenario where m = 100, ε = 10−27, we have ϕ = 1.1058. Then, ∂2r

∂γ22 ≤ 0 if
φ (γ2) ≤ 0, where φ (γ2) = − (1 + γ2) + ϕ

2(γ22+2γ)
3
2

+ 3ϕ√
γ22+2γ2

. Obviously, φ (γ2) is decreasing in γ2 for ϕ > 0. In

particular, we have φ (1) = −0.0164 for ϕ = 1.1058. Hence, φ (γ2) < 0 for γ2 ≥ 1 = 0 dB. Therefore, r is concave in
γ2 under the constraint guaranteeing γ2 ≥ 0 dB while the values of the target error probability and blocklength are within
practical interest, i.e., m ≥ 100, ε ≥ 10−27.

On the other hand, by inserting p1 = ptot − p2 into (3), we have

γ2 =
(ptot − p2) p2z1z2

σ2 (1 + p2z2)
=
z1

σ2

Ptotz2p2 − p2
2z2

1 + p2z2

=
z1

σ2

Ptotz2p2 + 1
z2

+ 2p2 −
(
p2

2z2 + 2p2 + 1
z2

)
1 + p2z2

=
z1

σ2

ptotz2p2 + 1
z2

+ 2p2 − 1
z2

(p2z2 + 1)
2

1 + p2z2

=
z1

σ2z2

(ptotz2 + 2) p2z2 + 1

1 + p2z2
− z1

z2σ2
(p2z2 + 1)

=
z1

σ2z2
(ptotz2 + 2)− z1

σ2z2

ptotz2 + 1

1 + p2z2
− z1

z2σ2
(p2z2 + 1) .

(13)

Then, we have the first and second order derivatives of γ2 with respect to p2 as

∂γ2

∂p2
=
z1

σ2

ptotz2 + 1

(1 + p2z2)
2 −

z1

σ2
, (14)

∂2γ2

∂p2
2

= −2z1z2

σ2

ptotz2 + 1

(1 + p2z2)
3 ≤ 0. (15)

Finally, under the constraint guaranteeing γ2 ≥ 0 dB while the target error probability and blocklength have values within
practical interest, i.e., m ≥ 100, ε ≥ 10−27, we have

∂2r

∂p2
2

=
∂2r

∂γ2
2︸︷︷︸

≤0

(
∂γ2

∂p2

)2

︸ ︷︷ ︸
≥0

+
∂r

∂γ2︸︷︷︸
≥0

∂2γ2

∂p2
2︸ ︷︷ ︸

≤0

≤ 0. (16)

Based on the above statements, we have the following characterization of Problem (9)

Proposition 2. Problem (9) is a convex optimization problem, when the target error probability and coding blocklength satisfy
ε ≥ 10−27 and m ≥ 100.

Proof: According to (8), we have
∂RE

∂r
=

e−θmr(1− ε)
2E [e−θmr(1− ε) + ε]

≥ 0, (17)

∂2RE

∂r2
=
−θme−θmr(1− ε)ε

2E[e−θmr(1− ε) + ε]
2 ≤ 0. (18)

By replacing p1 by ptot − p2, Problem (9) can be reformulated by

max
(p1,p2)∈Ω

RE(p2) (19)
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Then, we have the second order derivatives of RE with respect to p2 given as follows:

∂2RE

∂p2
2

=
∂2RE

∂r2︸ ︷︷ ︸
≤0

(
∂r

∂p2

)2

︸ ︷︷ ︸
≤0

+
∂RE

∂r︸ ︷︷ ︸
≥0

∂2r

∂p2
2︸ ︷︷ ︸

≤0

≤ 0. (20)

We have used in the above result that under the constraint guaranteeing γ ≥ 0 dB, we have ∂2r
∂p2i
≤ 0 according to Proposition 1.

Hence, RE is concave in p2 when γ2 ≥ 0 dB. As a result, Problem (19) as well as the original problem in (9) are convex
optimization problems.

So far, we have shown the convexity of the considered power allocation problem. In the following, we further study the
optimal power allocation policy.

Let ∂γ2
∂p2

be equal to zero. Then, we have

∂γ2

∂p2
=
z1

σ2

ptotz2 + 1

(1 + p2z2)
2 −

z1

σ2
= 0

⇔ ptotz2 + 1 = (1 + p2z2)
2

⇔
√
ptotz2 + 1− 1 = p2z2

⇔ p◦2 =

√
ptotz2 + 1− 1

z2
.

(21)

Note that ∂2γ2
∂p22
≤ 0. Then, the maximum achievable SNR optimized over power allocation is given by

γ◦2 = max
p1+p2=ptot

γ2 = γ2|p2=p◦2

=

(
z2ptot−

√
ptotz2+1+1

) (√
ptotz2+1−1

)
z1

z2σ2
√
ptotz2 + 1

.
(22)

According to Proposition 1, when γ◦2 ≥ γth, ∂r
∂γ2

> 0 holds. Hence, ∂r
∂p2

= ∂r
∂γ2

∂γ2
∂p2

= 0 ⇔ ∂γ2
∂p2

= 0. The optimal solution of
Problem (19) is given by (p∗1, p

∗
2) = (ptot − p◦2, p◦2). On the other hand, if γ◦2 < γth, according to the feasible set provided

in (10) the optimal solution is (p∗1, p
∗
2) = (0, 0).

Based on the above analysis, the analytical solution of Problem (9) can be summarized as follows

Proposition 3. The solution of Problem (9) is given by{
(p∗1, p

∗
2) = (0, 0) case γ◦2 < γth,

(p∗1, p
∗
2) = (ptot− p◦2, p◦2) case γ◦2 ≥ γth,

(23)

where p◦2 and γ◦2 are provided in (21) and (22), respectively.

V. SIMULATION RESULTS

In this section, we provide our simulation results to validate our analytical model and evaluate the AF relaying performance.
In the simulations, we consider the following parameterization: First, we set the power constraint to 20 dBm and the path-losses
of both hops individually to 10 dB. In addition, we assume independent Rayleigh fading channel for the two links, where the
exponentially distributed fading power has a mean value of E{z} = 1.

To start with, we consider within a single frame the impact of power allocation on the coding rate. The results are provided
in Fig. 2. The figure confirms our analytical results in Proposition 1 that the coding rate is concave in the power allocation
between the source and the relay for different setups of blocklength and target error probability. More importantly, we observe
that the optimal values of these curves (with different m and ε) are achieved by the same choice of p2 (recall that ptot is
fixed). This actually agrees with Equation (21) that the optimal amount of power allocated to the relay to maximize γ2 or r
is only influenced by the power constraint and the instantaneous channel gain z2. In addition, the figure also indicates that a
longer blocklength can support a higher coding rate. Moreover, guaranteeing a lower ε results in a loss in the coding rate. In
particular, this loss is more significant for the short blocklength case.

Next, we analyze the QoS-constrained throughput of the considered AF relaying network. In particular, we study the relation
between the maximal throughput achieved by power allocation with the QoS exponent θ. The results are shown in Fig. 3,
where the solid/dotted curves are obtained by the proposed optimal solution in Proposition 3 while the green bubble dots
present the corresponding maximal throughputs over power allocation obtained via exhaustive search. First, we note that the
performance determined with exhaustive search matches the performance of the proposed solution, and confirms our analysis. In
addition, as expected a high θ (corresponding to strict QoS requirements) results in a low throughput. However, it is interesting
that as θ increases these throughputs curves decrease differently. In particular, a long blocklength generally supports a higher
throughput when the QoS requirements are loose (low θ). On the other hand, when the QoS requirements become strict, a
short blocklength is preferred. In addition, for the long blocklength (m = 1000) case a high error probability introduces a
slightly higher throughput, while the opposite holds for the short blocklength (m = 100) case.
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Fig. 2. The impact of power allocation on the coding rate within a transmission frame.
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Fig. 3. The maximal throughput over power allocation versus θ.

To provide a clear insight on the impact of error probability and blocklength, we therefore further investigate the throughput
performance while varying error probability in Fig. 4 and varying the blocklength in Fig. 5. Again, we observe a perfect match
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Fig. 4. The maximal throughput over power allocation versus ε.between the proposed optimal solution and the result with the exhaustive search in the figures. Fig. 4 in general indicates that
the throughputs are concave or quasi-concave in the error probability ε, while the optimal choice of ε is different for different
setups, i.e., for different coding blocklength and QoS constraints. Finally, from Fig. 5 we observe that when θ is relatively
large, the throughput curves are decreasing in the blocklength. On the other hand, with a relatively small θ, the throughputs
are observed to be concave in the blocklength.
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Fig. 5. The maximal throughput over power allocation versus ε.

VI. CONCLUSION

In this work, we have studied a two-hop AF relaying network in the FBL regime and derived the QoS-constrained throughput
of the network. Moreover, we have proposed an optimal power allocation policy for the network to maximize the throughput.
Via simulations, first we have shown that the proposed power allocation policy has the same performance as that determined
via exhaustive search. In addition, it is observed that the throughputs are concave in the error probability and are decreasing
in the QoS exponent. Moreover, we have also observed that when the QoS exponent is relatively large, the throughput curves
are decreasing in the blocklength, while they are observed to be concave in the blocklength when QoS exponent is small.
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