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Abstract—Concave functions play a central role in optimiza-
tion. So-called exponentially concave functions are of similar im-
portance in information theory. In this paper, we comprehensively
discuss mathematical properties of the class of exponentially
concave functions, like closedness under linear and convex combi-
nation and relations to quasi-, Jensen- and Schur-concavity. Infor-
mation theoretic quantities such as self-information and (scaled)
entropy are shown to be exponentially concave. Furthermore, new
inequalities for the Kullback-Leibler divergence, for the entropy
of mixture distributions, and for mutual information are derived.

Index Terms—Inequalities, convex optimization, Schur-
concave, quasiconcave, Shannon theory, self-information, en-
tropy, mutual information, divergence, mixture distribution.

I. INTRODUCTION

More than 100 years ago, Johan Jensen published his
seminal paper [1] in which the fundamentals of convexity
are investigated. Nowadays, convex and concave functions
are central components in both optimization theory and set
theory. Furthermore, the concept of convexity and concavity
of functions is extended in various directions to tackle the
needs of physicists, engineers and mathematicians. For ex-
ample, the class of logarithmically convex functions provides
more accurate bounds and inequalities than the ones derived
from convex functions, see [2], [3]. Moreover, convexity and
concavity allow for very elegant proofs in inequality theory,
cf. [4].

In contrast to logarithmically convex (log-convex) functions,
their counterpart, the so-called exponentially concave (exp-
concave) functions, are rarely discussed in the literature,
probably due to their intricate structure. Exponentially concave
functions play an important role in information theory, as we
will see later. For instance, the (scaled) discrete entropy, as
a convex combination of logarithms, is exponentially con-
cave. It is exactly this type of combination that makes the
mathematical investigation of exponentially concave functions
cumbersome. Besides the application in information theory, a
thorough investigation of exponentially concave functions is
of general mathematical interest.

The growth of research on big data analytics and deep
learning has recently increased the interest in exponentially
concave functions. In [5], the smoothness of exponentially
concave functions is exploited for statistical learning, se-
quential prediction and stochastic optimization, which are
important topics in machine learning. Lower and upper bounds
on solutions of stochastic exponentially concave optimization
problems are discussed in [6]. Empirical risk minimization,

which is a general optimization framework that captures sev-
eral important learning problems including linear and logistic
regression, learning support vector machines (SVMs) with
the squared hinge-loss, and portfolio selection, see [7], is
investigated for exponentially concave loss functions in [8].
To the best of our knowledge, a comprehensive investigation
of exponentially concave functions as in the present paper is
new.

In the present paper, we present basic properties of exponen-
tially concave functions and inequalities. Afterwards, informa-
tion theoretic quantities are considered. We especially show
that both self-information and the (scaled) discrete entropy
are exponentially concave functions. Finally, these results
are applied to deduce a new lower bound on the Kullback-
Leibler divergence, new entropy inequalities for mixtures of
distributions, and inequalities for the mutual information of
discrete channels.

II. PRELIMINARIES

Let1 D be a convex2 subset3 of Rn. A function g : D → R
is called concave, if

βg(x) + β̄g(y) ≤ g(βx+ β̄y) (1)

holds for all x,y ∈ D and for all β ∈ [0, 1] with β̄ = 1− β.
Function g is called strictly concave, if strict inequality holds
in (1) for all x 6= y and for all β ∈ (0, 1). A function is
called (strictly) convex, if its negative is (strictly) concave,
cf. [2]. Note that convex and concave functions are necessarily
continuous in finite spaces. If in addition g is differentiable,
then the inequality

g(y)− g(x) ≤ ∇g(x)T (y − x) (2)

holds for all x,y ∈ D. For a twice differentiable function g,
an equivalent definition of concavity is given by

vT∇2g(x)v ≤ 0 (3)

for any vector v ∈ Rn and for all x ∈ D.

1The set of natural, real, and nonnegative real numbers are denoted by N ,
R and R+, respectively. The sets (a, b), (a, b], and [a, b] are the open, the
half-open, and the closed interval, respectively. Vectors are written in boldface
and their transpose is indicated by the superscript T. Gradient and Hessian of
a function f are shown by ∇f and ∇2f , respectively.

2A set D is convex if the line segment joining any two points in D is part
of D.

3Unless otherwise stated, we consider finite-dimensional (sub-)spaces and
finite (sub-)sets with cardinalities denoted by m ∈ N and n ∈ N throughout
the present paper. In few cases we also allow countably infinite spaces.



The concept of convexity and concavity can be extended
in various directions. A crucial and well-known representative
is the class of logarithmically convex functions, from which
tighter bounds in optimization theory evolve. As we will
see later, its counterpart, the class of exponentially concave
functions plays an important role in information theory. The
definition is analogous to the one of logarithmically convex
functions.

A function f : D → R is exponentially (strictly) concave in
x ∈ D, if the function exp

(
f(x)

)
is (strictly) concave. Hence,

equivalent definitions for exponentially concave functions are
obtained by applying (1), (2) and (3) to exp

(
f(x)

)
. Straight-

forward algebra yields the following:
a) (equivalent definition4) ∀x,y ∈ D, ∀β ∈ [0, 1] :

log
(
β exp[f(x)] + β̄ exp[f(y)]

)
≤ f(βx+ β̄y) , (4)

b) (assuming differentiability) ∀x,y ∈ D :

f(y)− f(x) ≤ log
(
1 +∇f(x)T (y − x)

)
, (5)

c) (assuming twice-differentiability) ∀x ∈ D, ∀v ∈ Rn :

vT (∇2f(x) +∇f(x)∇f(x)T)v ≤ 0 . (6)

Comparing (1)-(3) with (4)-(6) shows that tighter inequal-
ities for exponentially concave functions exist. In particular,
we have
βf(x) + β̄f(y)
≤ log

(
β exp[f(x)] + β̄ exp[f(y)]

)
≤ f(βx+ β̄y) ,

(7)

f(y)− f(x) ≤ log
(
1 +∇f(x)T (y − x)

)
≤ ∇f(x)T (y − x) ,

(8)

and

vT∇2f(x)v ≤ vT (∇2f(x) +∇f(x)∇f(x)T)v ≤ 0 . (9)

Inequalities (7)-(9) also show that every exponentially concave
function is a concave function, too.

By using mathematical induction, we can generalize in-
equality (4) as follows.

Corollary 1. Let f : D → R be an exponentially concave
function on the convex set D ⊆ Rn. Then for all wi ∈ R+

with
∑
i wi = 1 the inequalities∑

i
wif(xi) ≤ log

(∑
i
wi exp

(
f(xi)

))
≤ f

(∑
i
wixi

)
(10)

hold. On the right side, equality is attained for f(x) =
log
(
c0 +

∑
j cjxj

)
with properly chosen constants c0, c1, . . ..

Note that the left inequality in (10) is a simple consequence
of Jensen’s inequality. However, we have observed that espe-
cially for exponentially concave functions the left inequality
usually achieves smaller gaps compared to the right one which
is interesting in its own.

4The base of the logarithm is the Euler’s number e while exp refers to the
natural exponential function. Whenever the base becomes important, we write
loga(x) and ax instead of log(x) and exp(x), respectively, to highlight the
corresponding base a of both the logarithm and the exponential function.

A generalization of (5) yields a squeeze-inequality for the
difference f

(∑
j wjxj

)
−
∑
i wif(xi), which is the content

of the next two corollaries.
By choosing y = xi and x =

∑
j wjxj , and multiplying

both sides of (5) with wi and summing up over all i, the
following lower bound is derived.

Corollary 2. Let f : D → R be an exponentially concave
function on the convex set D ⊆ Rn. Then for all wi ∈ R+

with
∑
i wi = 1 the double-inequality

0 ≤−
∑

i
wi log

(
1 +∇f

(∑
j
wjxj

)T (
xi −

∑
j
wjxj

))
≤ f

(∑
j
wjxj

)
−
∑

i
wif(xi) (11)

holds.

The logarithmic terms on the lefthand side of (11) are
always negative, as can be seen by enlarging their argument
by the aid of AM-GM inequality, cf. [4].

By replacing x = xi and y =
∑
j wjxj in (5) and

proceeding analogously to the above, we obtain the following
upper bound.

Corollary 3. Let f : D → R be an exponentially concave
function on the convex set D ⊆ Rn. Then for all wi ∈ R+

with
∑
i wi = 1 the inequality

f
(∑

j
wjxj

)
−
∑

i
wif(xi)

≤
∑

i
wi log

(
1−∇f(xi)T

(
xi −

∑
j
wjxj

)) (12)

holds.

Integral versions of (10)-(12) can be derived under ad-
ditional constraints on f , e.g., boundedness and Riemann
integrability.

We will now discuss mathematical properties of exponen-
tially concave functions.

III. MATHEMATICAL ATTRIBUTES

In the following we will show that under certain assump-
tions the shift, scale, combination, and composition of expo-
nentially concave functions preserve exponential concavity.

Proposition 4. Let f be an exponentially concave function.
Adding a constant c1 ∈ R to f or multiplying f by a factor
c2 ∈ [0, 1] preserves its exponential concavity.

Proof. The proof is easy, since exp
(
c1 + f(x)

)
=

exp(c1) exp
(
f(x)

)
and exp

(
c2f(x)

)
=
[
exp
(
f(x)

)]c2 are
concave functions for any c1 ∈ R and any c2 ∈ [0, 1] whenever
exp
(
f(x)

)
is concave.

For certain functions the multiplicative constant may be
greater than one, since for a twice-differentiable and expo-
nentially concave function f : D ⊆ R → R we obtain for
cf(x) the largest possible constant by cmax = infx∈D

−f ′′(x)
[f ′(x)]2

from (6). For exponentially concave functions cmax is nec-
essarily greater than or equal to one. Hence, functions with
cmax < 1 cannot be exponentially concave.



Proposition 5. The convex combination
∑
i wifi(xi) of ex-

ponentially concave functions fi : Di → R defined on convex
sets Di ⊆ Rn with weights wi ∈ R+,

∑
i wi = 1, is expo-

nentially concave on
⋂
iDi.

Proof. We show that (4) holds for
∑
i wifi(xi). By using

the generalized Hölder’s inequality, cf. [4], we obtain the
following chain of inequalities

log
(
β exp

[∑
i
wifi(xi)

]
+ β̄ exp

[∑
i
wifi(yi)

])
= log

(
β
∏

i
exp[wifi(xi)]+β̄

∏
j
exp[wjfj(yi)]

)
≤ log

(∏
i

(
β exp[fi(xi)] + β̄ exp[fi(yi)]

)wi
)

=
∑

i
wi log

(
β exp[fi(xi)] + β̄ exp[fi(yi)]

)
≤
∑

i
wi fi(βxi + β̄yi) ,

which completes the proof.

Proposition 6. The sum f1(x) + f2(x) of exponentially
concave functions f1, f2 : D → R, on the convex set D ⊆ Rn,
is exponentially concave, if

[f1(x)− f1(y)][f2(x)− f2(y)] ≤ 0 (13)

for all x,y ∈ D holds. For n = 1 relation (13) holds if f1
and f2 are contra-monotonic.

Proof. Since the exponential function is monotonic, rela-
tion (13) is equivalent to

exp
(
f1(x) + f2(x)

)
+ exp

(
f1(y) + f2(y)

)
≤ exp

(
f1(x) + f2(y)

)
+ exp

(
f1(y) + f2(x)

)
.

(14)

By using the exponential concavity of f1 and f2, and apply-
ing (14) afterwards, we infer

exp
(
f1(βx+ β̄y) + f2(βx+ β̄y)

)
≥
[
β exp

(
f1(x)

)
+ β̄ exp

(
f1(y)

)]
·
[
β exp

(
f2(x)

)
+ β̄ exp

(
f2(y)

)]
= β2 exp

(
f1(x) + f2(x)

)
+ β̄2 exp

(
f1(y) + f2(y)

)
+ ββ̄

[
exp
(
f1(x) + f2(y)

)
+ exp

(
f1(y) + f2(x)

)]
≥ β exp

(
f1(x) + f2(x)

)
+ β̄ exp

(
f1(y) + f2(y)

)
,

which is equivalent to (4) and thus completes the proof.

Proposition 7. Let f : Df → R be an exponentially concave
function on the convex set Df ⊆ Rm. Let g : Dg → Df have
components gi, 1 ≤ i ≤ m, where Dg ⊆ Rn is a convex set.
If f is non-decreasing in each argument and gi concave for all
i, or f is non-increasing in each argument and gi convex for
all i, then the composition f

(
g(x)

)
is exponentially concave.

Proof. By applying inequality (4) to f , then using the
monotonicity of f in connection with concavity or convexity
of each gi, we obtain

log
(
β exp

[
f
(
g(x)

)]
+ β̄ exp

[
f
(
g(y)

)])
≤ f

(
βg(x) + β̄g(y)

)
≤ f

(
g[βx+ β̄y]

)
,

which proves the assertion.
An obvious consequence of Proposition 7 is that

log
(∑

i wigi(xi)
)

is exponentially concave for any convex
combination

∑
i wigi(xi) of concave functions gi.

A degenerate case of Proposition 7 is when each gi becomes
the identity function. In this case we obtain the following
statement.

Proposition 8. Let f : Df → R be an exponentially concave
function on the convex set Df ⊆ Rm. Then the composition
f
(∑

i wixi
)
, with xi ∈ Df , wi ≥ 0 and

∑
i wi = 1, is an

exponentially concave function of (x1,x2, . . . ).

Proof. By applying inequality (4) to f and using the
linearity of

∑
i wixi, we obtain

log
(
β exp

[
f
(∑

i
wixi

)]
+ β̄ exp

[
f
(∑

i
wiyi

)])
≤ f

(
β
∑

i
wixi + β̄

∑
i
wiyi

)
≤ f

(∑
i
wi[βxi + β̄yi]

)
,

which shows the assertion.
We will now investigate the relation between exponentially

concave and Schur-concave functions. It is well-known that
symmetric concave functions are Schur-concave, see [4] with
many extensions in [9]. Thus, for symmetric and exponentially
concave functions one can easily show the Schur-concavity.
The converse, that a Schur-concave function is exponentially
concave, is not true in general and needs additional assump-
tions, one of which is introduced in the next proposition.

Proposition 9. Let D be an interval and f a
continuous real function on Dn. If the function
φ(x1,x2) = exp

(
f(x1)

)
+ exp

(
f(x2)

)
is Schur-concave on

Dn×2, i.e., φ(y1,y2) ≤ φ(x1,x2) for all matrices5 (x1,x2)
that are row majorized6 by (y1,y2), then the function f is
exponentially concave on Dn.

Proof. Since φ is Schur-concave, it holds that φ(y1,y2) ≤
φ(x1,x2) for the specific choice x1 = x2 = (y1+y2)/2. This
yields exp

(
f(y1)

)
+ exp

(
f(y2)

)
≤ 2 exp

(
f(y1/2 + y2/2)

)
,

which shows that exp
(
f(x)

)
is a midconcave function of x.

Since f is continuous, the concavity of exp
(
f(x)

)
follows

from Jensen’s theorem, see [3, p. 215]. Hence, f is exponen-
tially concave.

A simple connection to quasiconcave functions is consid-
ered next, which shows that exponentially concave functions
are as well quasiconcave.

Proposition 10. The exponential function of any concave
function is quasiconcave.

Proof. Let f : D → R be a concave function on the
convex set D ∈ Rn. Then the inequality βf(x) + β̄f(y) ≤

5Note that x1, x2, y1 and y2 are column vectors such that X = (x1,x2)
and Y = (y1,y2) are n× 2 matrices.

6The statement in Proposition 9 remains valid for different multivariate ma-
jorization techniques, e.g., the chain majorization or the ordinary majorization,
whenever the row majorization is implied by them, cf. [9, p. 620].



f(βx + β̄y) holds for any x,y ∈ D, β ∈ [0, 1]. For
g(x) = exp

(
f(x)

)
to be a quasiconcave function of x ∈ D

we have to show the inequality

min{g(x), g(y)} ≤ g(βx+ β̄y)

for any x,y ∈ D, β ∈ [0, 1]. Assuming w.l.o.g. that g(x) ≤
g(y), which is equivalent to f(x) ≤ f(y), we conclude

g(x) = exp
(
βf(x) + β̄f(x)

)
≤ exp

(
βf(x) + β̄f(y)

)
≤ exp

(
f(βx+ β̄y)

)
= g(βx+ β̄y) ,

which completes the proof.
The converse of the above statement does not hold as can

be seen from simple examples.
The perspective of exponentially concave functions can

be defined analogously to [10, p. 89]. Unfortunately, the
corresponding perspective is not homogeneous.

Proposition 11. Let f : D → R be an exponentially concave
function on the convex set D ∈ Rn. Then its perspective
g(y,x) = log(y) + f

(
x
y

)
is also exponentially concave on

R+ ×D.

Proof. The assertion is proven by the following chain of
equations

exp
[
g(βy1 + β̄y2, βx1 + β̄x2)

]
= exp

[
log(βy1 + β̄y2) + f

(βx1 + β̄x2

βy1 + β̄y2

)]
=(βy1 + β̄y2)exp

[
f
( βy1
βy1 + β̄y2

x1

y1
+

β̄y2
βy1 + β̄y2

x2

y2

)]
≥ βy1 exp

[
f
(x1

y1

)]
+ β̄y2 exp

[
f
(x2

y2

)]
= β exp

[
g(y1,x1)

]
+ exp

[
g(y2,x2)

]
,

which satisfies (4).
Since exponentially concave functions are concave, maxi-

mization of exponentially concave functions has the advantage
that every local optimum is also a global maximum. Moreover,
exponentially concave functions can be upper-bounded by
concave and sufficiently smooth hypersurfaces.

Proposition 12. Let f : D → R be an exponentially concave
function on the convex set D ∈ Rn. Then the inequality
f(y) ≤ f(x) + log

(
1 + vT (y − x)

)
holds for all x,y ∈ D

and proper vector v.

Proof. It is well-known that for any concave function g
at each point x ∈ D there exists some ṽ such that g(y) ≤
g(x) + ṽT(y − x) for all y ∈ D. If g is differentiable at x
then ṽ = ∇g(x) may be chosen. Replacing g by exp(f) and
applying the logarithm on both sides yields f(y) ≤ f(x) +
log
(
1 + exp(−f(x))ṽT (y − x)

)
with v = exp(−f(x))ṽ,

which proves the statement, c.f. (5).
Considering the argument of the logarithm in equation (5),

a new necessary condition for exponentially concave and
differentiable functions is obtained.

Corollary 13. For an exponentially concave and differentiable
function f : D → R the inequality

∇f(y)T (y − x) ≤ 1 (15)

holds for all x,y ∈ D. Particularly for x = 0, the relation
∇f(y)T y ≤ 1 limits the inner product between the slope and
the position of any point y.

Corollary 13 provides a quick test for excluding functions
from the class of exponentially concave functions. For exam-
ple, the function log(1 + x) is exponentially concave, but the
sum log(1 + x) + x is not. Since multiplying the derivative
[log(1 + x) + x]′ = 2+x

1+x by y − x and choosing y = 2x + 1
yields 2 + x > 1 for all x > −1. Hence, inequality (15) is
violated, which means that log(1+x)+x is not exponentially
concave.

The converse of Corollary 13 is not valid in general as
simple examples show.

IV. EXPONENTIAL CONCAVITY OF INFORMATION
THEORETIC QUANTITIES

In this section, we show exponential concavity of infor-
mation theoretic quantities like self-information and entropy.
We start with the self-information and will consequently
show that the (scaled) entropy is exponentially concave which
results in an inequality for the entropy of mixtures of discrete
distributions.

Theorem 14. Self-information ρ(x) = −x log x is exponen-
tially concave for x ∈ [0, 1].

Proof. Since ρ is differentiable, we consider the sec-
ond derivative exp

(
ρ(x)

)′′ = exp
(
ρ(x)

)
v(x) with v(x) =

log2(ex) − x−1 as well as v′(x) = x−1
(
x−1 + 2 log(ex)

)
and v′′(x) = 2x−2

(
1−x−1− log(ex)

)
. Due to the inequality

log y ≥ 1 − y−1, we can enlarge v′′(x) to obtain v′′(x) ≤
2x−3(e−1 − 1) < 0. Since v′′(x) is negative, v(x) is concave
and v′(x) is decreasing. With v′(1) = 3 > 0 it follows that
v′(x) is positive and hence v(x) is increasing. With v(1) = 0
we deduce that v(x) is non-positive. Thus exp

(
ρ(x)

)′′ ≤ 0
yields exponential concavity of ρ(x) for x ∈ [0, 1].

Since self-information is exponentially concave, we can
simply use Proposition 5 to show the following inequality.

Corollary 15. The weighted entropy [11], defined by
Hn(x,u) = −

∑n
i=1 uixi log xi, with ui, xi ∈ [0, 1] and∑n

i=1 ui =
∑n
i=1 xi = 1, is exponentially concave in x for

all n ≥ 1, i.e.,

β exp
( n∑
i=1

uiρ(xi)
)

+ β̄ exp
( n∑
i=1

uiρ(yi)
)

≤ exp
( n∑
i=1

uiρ
(
βxi + β̄yi

))
(16)

holds for any β ∈ [0, 1].

The compositions exp
(
H2(x, 1−x)

)
and exp

(
ρ(x)

)
of the

exponential function with both the binary entropy and the self-
information are depicted in Figure 1.
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Fig. 1: The functions exp
(
H2(x, 1 − x)

)
and exp

(
ρ(x)

)
are

shown by a blue dashed and a red solid curve, respectively.

In addition to the above relationship, we can deduce similar
inequalities for the ordinary entropy for a limited number of
dimensions. In particular, we show that only the binary and
the ternary entropies are exponentially concave.

Theorem 16. The entropy Hn(x) = −
∑n
i=1 xi log xi, with

xi ∈ [0, 1] and
∑n
i=1 xi = 1, is exponentially concave in x

only for n ∈ {2, 3}.

Proof. Since ρ, and consequently Hn, is differentiable, we
consider the second derivative of

g(β) = exp
( n∑
i=1

ρ
(
βxi + β̄yi

))
,

in order to show that g is concave between any two feasible
points x and y as long as the number n of elements is less
than four.

The second derivative of g reads as g′′(β) = g(β)v(β) with
v(β) given by( n∑
i=1

ρ′
(
βxi+β̄yi

)
(xi−yi)

)2

+
n∑
i=1

ρ′′
(
βxi+β̄yi

)
(xi−yi)2 .

Since g is nonnegative, we only need to check the sign of v for
the proof. By the substitutions zi = βxi+β̄yi and di = xi−yi
we obtain

vn(d, z) =
( n∑
i=1

di log(zi)
)2

−
n∑
i=1

d2
i

zi
.

Note that z has to fulfill
∑n
i=1 zi = 1 and zi ≥ 0 for all i

while
∑n
i=1 di = 0 and −1 ≤ di ≤ 1 for all i have to be

taken into account.
First we show that for all n ≥ 4 the function vn(d, z) can

be positive for particularly chosen d and z which disproves the
exponential concavity of entropy Hn for all n ≥ 4. Consider
the choice x0 =

(
1 − (n − 1) ε2 ,

ε
2 ,

ε
2 , . . . ,

ε
2

)
and y0 =

(
(n −

1) ε2 ,
1

n−1−
ε
2 ,

1
n−1−

ε
2 , . . . ,

1
n−1−

ε
2

)
with a sufficiently small

ε > 0 with which we determine d0 =
(
1 − (n − 1)ε, ε −

1
n−1 , ε−

1
n−1 , . . . , ε−

1
n−1

)
and z0 =

(
z, 1−z

n−1 ,
1−z
n−1 , . . . ,

1−z
n−1

)
with z = β+(1−2β)(n−1) ε2 . For 0 < β < 1

2 , corresponding
to 0 < z < 1, it leads to the quantity

ν(z, n) =
vn(d0, z0)(

1− (n− 1)ε
)2 = log2

(
z
n− 1
1− z

)
− 1
z
− 1

1− z
,

which is a function of z and n, and is increasing in n.
Selecting z = 85

100 yields ν
(

85
100 , n

)
= log2

(
17 n−1

3

)
− 400

51 ≥
log2(17)− 400

51 > log2
(

e
√

8
)
−8 = 0, where the first inequality

arises from the monotonicity in n and the second from
modification of the constants. Hence, we obtain that ν(z, n),
and consequently vn(d, z), can be positive for all n ≥ 4 which
disproves the exponential concavity of entropy for n ≥ 4.

Now, we show that v3(d, z) is always negative in order to
prove the exponential concavity of the ternary entropy. There-
fore we apply the Cauchy-Bunyakovsky-Schwarz inequality,
cf. [4], on the first term in v3(d, z) to obtain the inequality( 3∑

i=1

di log(zi)
)2

=
( 3∑
i=1

di log
(zi
λ

))2

≤
( 3∑
i=1

|di|√
zi
·
√
zi

∣∣∣log
(zi
λ

)∣∣∣)2

≤
3∑
i=1

d2
i

zi
·

3∑
i=1

zi log2
(zi
λ

)
,

for any positive λ. Rearranging z such that z1 ≤ z2 ≤ z3
holds and choosing λ = z3, it leads to

3∑
i=1

zi log2
(zi
λ

)
= z3

[z1
z3

log2
(z1
z3

)
+
z2
z3

log2
(z2
z3

)]
.

Note that the function y1 log2(y1) + y2 log2(y2) is Schur-
concave in (y1, y2) and hence we obtain the upper bound

z3

[z1
z3

log2
(z1
z3

)
+
z2
z3

log2
(z2
z3

)]
≤ z3

[
2

1− z3
2z3

log2
(1− z3

2z3

)]
≤ (1− z3) log2

(1− z3
2z3

)
,

for all 1
3 ≤ z3 ≤ 1. The last quantity can simply be maximized

by numerical methods due to its quasiconcavity. This leads to
an upper bound of 0.88474 < 1 at z?3 = 0.84287. Hence, the
inequality( 3∑

i=1

di log(zi)
)2

≤
3∑
i=1

d2
i

zi
·

3∑
i=1

zi log2
(zi
a

)
≤

3∑
i=1

d2
i

zi

holds, which proves v3(d, z) ≤ 0. Thus, the ternary entropy
is exponentially concave.

It remains to show the exponential concavity of the binary
entropy, which can easily be done by forcing d1 = 0 and then
following the same steps as for the proof of ternary entropy.

As can be seen from Corollary 15 and Theorem 16 there
must exist a value cn < n, depending on the number n of di-
mensions, such that 1

cn
Hn(x) becomes exponentially concave

for all n > 1. The next theorem uses this principle and hence
improves and consolidates Corollary 15 and Theorem 16.



Theorem 17. Let Hn be the entropy as defined in Theorem 16.
Then the function 1

cn
Hn(x) is exponentially concave in x for

all n > 1 with cn ≥ max
1/n<z<1

z(1− z) log2
(

1−z
z(n−1)

)
.

Proof. Analogously to the proof of the ternary entropy from
Theorem 16, we have to show that the function

g(β) = exp
(

1
cn

n∑
i=1

ρ
(
βxi + β̄yi

))
is concave in β, or equivalently we can show that

vn(d, z) =
1
cn

( n∑
i=1

di log(zi)
)2

−
n∑
i=1

d2
i

zi

is non-positive. Again we enlarge vn(d, z) by applying the
Cauchy-Bunyakovsky-Schwarz inequality to obtain

vn(d, z) =
1
cn

( n∑
i=1

di log
(zi
λ

))2

−
n∑
i=1

d2
i

zi

≤ 1
cn

n∑
i=1

d2
i

zi

n∑
i=1

zi log2
(zi
λ

)
−

n∑
i=1

d2
i

zi

=
n∑
i=1

d2
i

zi

(
1
cn

n∑
i=1

zi log2
(zi
λ

)
− 1
)
.

By optimizing λ the gap of the above inequality can be
reduced. We first consider the case λ = 1 which yields a
weak lower bound for cn. Afterwards we optimize λ to obtain
a sharper lower bound as stated in the assertion. W.l.o.g. we
assume z1 ≤ z2 ≤ · · · ≤ zn in what follows.

For λ = 1 the sum
∑n
i=1 zi log2(zi) is Schur-concave in z

which yields 1
cn

∑n
i=1 zi log2(zi) ≤ 1

cn
log2(n) at z?i = 1

n ∀ i.
From vn(d, z) ≤ 0 we hence obtain 1

cn
log2(n) − 1 ≤ 0 and

in turn cn ≥ log2(n), which can be improved as follows.
For λ ≤ zn the function y log2

(
y
λ

)
is quasiconcave in

y for y ≤ λ and convex for y ≥ λ. Thus, maximizing∑n
i=1 zi log2

(
zi

λ

)
subject to

∑n
i=1 zi = 1, zi ≥ 0, will attain

its maximum at z?1 = z?2 = · · · = z?n−1 = 1−z?
n

n−1 ≤ λ ≤ z?n,
i.e.,

∑n
i=1 zi log2

(
zi

λ

)
≤ (1−z?n) log2

( 1−z?
n

λ(n−1)

)
+z?n log2

( z?
n

λ

)
.

Since the last term is quasiconvex in λ we can reduce the
gap by minimizing over λ. With λ? = z?n

z?
n
( 1−z?

n

n−1

)1−z?
n

we end up in (1 − z?n) log2
( 1−z?

n

λ?(n−1)

)
+ z?n log2

( z?
n

λ?

)
=

z?n(1 − z?n) log2
( 1−z?

n

z?
n(n−1)

)
. From vn(d, z) ≤ 0 we hence

obtain 1
cn
z?n(1 − z?n) log2

( 1−z?
n

z?
n(n−1)

)
− 1 ≤ 0 and in turn

cn ≥ max
1/n<z<1

z(1− z) log2
(

1−z
z(n−1)

)
.

Note that by using the relation between geometric
and logarithmic means one can simply show z?(1 −
z?) log2

(
1−z?

z?(n−1)

)
≤ log2(n − 1) ≤ log2(n). Table I lists

some examples for comparison.
Analogously to Theorem 17, the exponential concavity of

Rényi entropy [12], [13], scaled by a number cn, can also be
shown with some more effort.

The following functional structures are key elements for
dealing with the mutual information of certain fundamental
channel models, see [14]–[17].

TABLE I: Multiplicative factors of the entropy for becoming
exponentially concave.

n log2(n) max
1/n<z<1

z(1− z) log2
(

1−z
z(n−1)

)
2 0.480453 0.439229 = 1

2.27672

3 1.20695 0.761802 = 1
1.31268

4 1.92181 1.02349 = 1
0.977049

5 2.59029 1.24645 = 1
0.80228

10 5.3019 2.05839 = 1
0.485817

20 8.97441 3.06501 = 1
0.326263

50 15.3039 4.7187 = 1
0.211923

100 21.2076 6.22687 = 1
0.160594

1000 47.7171 12.9004 = 1
0.0775172

10000 84.8304 22.1922 = 1
0.0450608

Theorem 18. The difference ρ
(
βγ1 + β̄γ2

)
−βρ(γ1)− β̄ρ(γ2)

is exponentially concave in β ∈ [0, 1] for all γ1, γ2 ∈ [0, 1].

Proof. Since self-information is differentiable, we show that
inequality (6) holds. Let f(β) = ρ

(
βγ1 + β̄γ2

)
− βρ(γ1) −

β̄ρ(γ2) and v(β) = f ′′(β)+ [f ′(β)]2. If f(β) is exponentially
concave in β, then v(β) ≤ 0 must hold. By simple calculation
we obtain f ′(β) = (γ1−γ2)ρ′

(
βγ1 + β̄γ2

)
−
(
ρ(γ1)−ρ(γ2)

)
and f ′′(β) = (γ1 − γ2)2ρ′′

(
βγ1 + β̄γ2

)
with ρ′(β) = −1 −

log β and ρ′′(β) = −β−1. It is easy to check that v(β) = 0
for γ1 = γ2, so no further investigation is needed for this
case. Since f ′′(β) is non-positive, we can represent v(β) in
the form

(
f ′(β) −

√
|f ′′(β)|

)(
f ′(β) +

√
|f ′′(β)|

)
. Now we

only consider the case γ1 > γ2 in the following, since the
opposite case can be treated analogously. Then we have

f ′(β)−
√
|f ′′(β)| =−

(
γ1 + ρ(γ1)− γ2 − ρ(γ2)

)
− (γ1 − γ2)

(
1√
γ0

+ log γ0

) (17)

and

f ′(β) +
√
|f ′′(β)| =−

(
γ1 + ρ(γ1)− γ2 − ρ(γ2)

)
+ (γ1 − γ2)

(
1√
γ0
− log γ0

) (18)

with γ0 = βγ1+β̄γ2. Consider now the function γ+ρ(γ) with
[γ+ρ(γ)]′ = − log γ ≥ 0 for all γ ∈ (0, 1]. Since its derivative
is non-negative, the function γ+ ρ(γ) is increasing in γ. This
means that the quantity

(
γ1 + ρ(γ1) − γ2 − ρ(γ2)

)
is non-

negative for γ1 > γ2. It is easy7 to show that 1√
γ0
− log γ0 ≥

1√
γ0

+ log γ0 ≥ 2(1 − log 2) ≥ 0 for γ0 ∈ [0, 1]. Hence, the
function (17) is negative. Since 1√

γ0
− log γ0 is decreasing in

7The function 1√
γ

+ log γ has the derivative 2
√
γ−1√

2γ3/2 , which is positive
for all γ > 1/4 and non-positive otherwise. Hence, γ = 1/4 is a global
minimum, which leads to 1√

γ
+log γ ≥ 2(1− log 2) ≥ 0. In addition, since

γ ∈ [0, 1], it holds 1√
γ
− log γ ≥ 1√

γ
+ log γ.



γ0, we maximize γ0 by replacing it with γ1 to obtain

f ′(β) +
√
|f ′′(β)| ≥ −

(
γ1 + ρ(γ1)− γ2 − ρ(γ2)

)
+ (γ1 − γ2)

(
1√
γ1
− log γ1

)
= (1−√γ1)

(
1− γ2

γ1

)√
γ1 + γ2 log

(
γ1
γ2

)
≥ 0 .

Hence, the product of f ′(β) −
√
|f ′′(β)| with f ′(β) +√

|f ′′(β)| is negative, which shows the negativity of v(β).
This completes the proof.

For the sake of compactness, we hereinafter denote the
binary entropy H2(x, 1− x) by H(x).

Theorem 19. The difference H(βγ1 + β̄γ2) − βH(γ1) −
β̄H(γ2) is exponentially concave in β ∈ [0, 1] for all γ1, γ2 ∈
[0, 1].

Proof. We consider the function f(β) = H(βγ1 + β̄γ2)−
βH(γ1)− β̄H(γ2) and its first and second derivatives w.r.t. β
as given by

f ′(β) = H ′(βγ1 + β̄γ2)(γ1 − γ2)−H(γ1) +H(γ2) (19)

and
f ′′(β) = H ′′(βγ1 + β̄γ2)(γ1 − γ2)2 , (20)

where H ′(x) = log 1−x
x and H ′′(x) = −1

x(1−x) . Without loss
of generality we assume γ2 < γ1, since for the case γ1 = γ2

the function f becomes zero. Similar to the above proof, we
define v(β) = f ′′(β)+[f ′(β)]2 and show that v is non-positive
to prove the exponential concavity of f . The decomposition
of v yields

f ′(β)−
√
|f ′′(β)| =− γ1 − γ2√

γ0(1− γ0)
−
(
H(γ1)−H(γ2)

)
+ (γ1 − γ2) log

(1− γ0

γ0

)
(21)

and

f ′(β) +
√
|f ′′(β)| = +

γ1 − γ2√
γ0(1− γ0)

−
(
H(γ1)−H(γ2)

)
+ (γ1 − γ2) log

(1− γ0

γ0

)
(22)

with γ0 = βγ1 + β̄γ2. Note that both functions log
(

1−γ0
γ0

)
+

1√
γ0(1−γ0)

and log
(

1−γ0
γ0

)
− 1√

γ0(1−γ0)
are decreasing in γ0

for γ0 ≤ 1
2 and γ0 ≥ 1

2 , respectively, since the derivatives are
non-positive, i.e.,

∂

∂γ0
log
(1− γ0

γ0

)
± 1√

γ0(1− γ0)

=
−1

γ0(1− γ0)

(
1± 1− 2γ0

2
√
γ0(1− γ0)

)
≤ 0 .

In the following we only consider the particular case γ2 <
γ1 < 1 − γ2 along with the subcases γ0 ≥ 1

2 and γ0 ≤ 1
2 .

The case γ2 < 1 − γ2 < γ1 can be proven similarly, after
multiplication of both (21) and (22) with minus one.

In the subcase γ2 < γ1 < 1 − γ2 with γ0 ≥ 1
2 , we have

log
(

1−γ0
γ0

)
≤ 0, γ1 ≥ 1

2 , and H(γ1) > H(γ2) ≥ 0 which
lead to f ′(β) −

√
|f ′′(β)| ≤ 0. Using in addition the above

monotonicity we obtain

f ′(β)+
√
|f ′′(β)| ≥ +

γ1 − γ2√
γ1(1− γ1)

−
(
H(γ1)−H(γ2)

)
+ (γ1 − γ2) log

(1− γ1

γ1

)
= H(γ2)− γ2 log

(1− γ1

γ1︸ ︷︷ ︸
≤1

)
+

γ1 − γ2√
γ1(1− γ1)

≥ 0 .

Hence, the product v(β) =
(
f ′(β) −

√
|f ′′(β)|

)(
f ′(β) +√

|f ′′(β)|
)

is non-positive.
In the subcase γ2 < γ1 < 1 − γ2 with γ0 ≤ 1

2 , we have
log
(

1−γ0
γ0

)
≥ 0 and H(γ1) > H(γ2) which lead to

f ′(β)−
√
|f ′′(β)| ≤ − γ1 − γ2√

γ0(1− γ0)
−
(
H(γ1)−H(γ2)

)
+ (γ1 − γ2)

|1− 2γ0|√
γ0(1− γ0)

≤ − γ1 − γ2√
γ0(1− γ0)

−
(
H(γ1)−H(γ2)

)
+

γ1 − γ2√
γ0(1− γ0)

= −
(
H(γ1)−H(γ2)

)
≤ 0 ,

where we have used the inequality log2 x ≤ (1−x)2
x from

Proposition 26. With more effort we also deduce

f ′(β)+
√
|f ′′(β)| ≥ +

γ1 − γ2√
γ2(1− γ2)

−
(
H(γ1)−H(γ2)

)
+ (γ1 − γ2) log

(1− γ2

γ2

)
= +

γ1 − γ2√
γ2(1− γ2)

− log
(1− γ2

1− γ1︸ ︷︷ ︸
≥1

)

+ γ1 log
(1− γ2

1− γ1

γ1

γ2

)
≥ +

γ1 − γ2√
γ2(1− γ2)

− γ1 − γ2√
1− γ1

√
1− γ2

+ γ1 log
(1− γ2

1− γ1

γ1

γ2

)
≥ +

γ1 − γ2√
γ2(1− γ2)

− γ1 − γ2√
γ2(1− γ2)

+ γ1 log
(1− γ2

1− γ1

γ1

γ2

)
= γ1 log

(1− γ2

1− γ1︸ ︷︷ ︸
≥1

γ1

γ2︸︷︷︸
≥1

)
≥ 0 ,

where we again have used the inequality log2 x ≤ (1−x)2
x and

γ2 < 1−γ1, that follows from γ1 < 1−γ2. Thus, the product
v(β) =

(
f ′(β)−

√
|f ′′(β)|

)(
f ′(β)+

√
|f ′′(β)|

)
is again non-

positive.
In summary, v(β) in non-positive, which proves the expo-

nential concavity of f(β).



As can simply be shown by counterexamples, the differ-
ences H

(∑n
i=1 βiγi

)
−
∑n
i=1 βiH(γi) under the constraints∑n

i=1 βi = 1 and βi ≥ 0 can never be exponentially
concave in βββ for any n ≥ 3. As an example we consider the
function exp

[
H
(∑3

i=1 βiγi
)
−
∑3
i=1 βiH(γi)

]
, which leads

to the obviously convex function exp
[
(1− β2)H

(
4
5

)]
for the

particular choice γ1 = 0, γ2 = 4
5 , γ3 = 1, β1 = 1−β2

5 , and
β3 = 4 1−β2

5 .
Exponential concavity can be extended in many more di-

rections, e.g., to Jensen-Steffensen or Hermite-Hadamard-like
inequalities and even to differential entropy, which are devoted
to future works.

V. APPLICATION OF EXPONENTIAL CONCAVITY

Exponential concavity is a useful tool for proving informa-
tion theoretic inequalities and bounds. This is demonstrated in
the present section, where we derive nine new bounds.

Proposition 20. Let Hn(x) be the entropy and cn be as
given in Theorem 17. Let Dn(x‖y) =

∑n
i=1 xi log xi

yi
be

the Kullback-Leibler divergence, xi, yi ∈ [0, 1],
∑n
i=1 xi =∑n

i=1 yi = 1. It holds that

Dn(x‖y) ≥ cn log
(
1+ 1

cn
∇Hn(y)T(x−y)

)
−Hn(x)+Hn(y)

≥ 0 . (23)

Proof. By simple calculation, we observe the identity

Dn(x‖y) = cn
1
cn
∇Hn(y)T (x− y)−Hn(x) +Hn(y) .

Comparing the above identity with inequality (8) and recalling
that 1

cn
Hn(x) is exponentially concave, yields the lower

bound.
The entropy power inequality is a well-known inequality

to describe the relationship between the entropies of two
independent random variables and their sum, cf. [18]–[20]. In
the next two propositions, we carry over this principle to derive
new inequalities between the weighted entropies of random
variables and their mixture distributions.

Proposition 21. Consider the weighted entropies Hn(xi,u)
of m probability vectors xi ∈ Rn+ and corresponding weights
u ∈ Rn+. Then the inequalities

exp
( m∑
i=1

wiHn(xi,u)
)
≤

m∑
i=1

wi exp
(
Hn(xi,u)

)
≤ exp

(
Hn
( m∑
i=1

wixi,u
)) (24)

hold for all wi ∈ [0, 1] with
∑m
i=1 wi = 1.

Proof. Since the weighted entropy function is exponentially
concave as stated in Corollary 15, we can use inequality (10)
to deduce the assertion.

Other useful inequalities for comparing the entropies of two
distributions are the following ones.

Proposition 22. Consider the weighted entropies Hn(x,u)
and Hn(y,u) of probability vectors x,y,u ∈ Rn+. Then the
inequality

exp
(
Hn(y,u)

)∑n

i=1
ui(xi − yi) log(yi)

≤ exp
(
Hn(x,u)

)∑n

i=1
ui(xi − yi) log(xi)

(25)

holds.

Proof. Since the weighted entropy function is exponentially
concave as stated in Corollary 15, the first derivative of g(β) =
exp
(
Hn(βx + β̄y,u)

)
w.r.t. β must be decreasing, i.e., the

inequality g′(1) ≤ g′(0) holds. This completes the proof.
Similar to the last statement, we can deduce the following

assertion.

Proposition 23. Consider the weighted entropies Hn(x,u)
and Hn(y,u) of probability vectors x,y,u ∈ Rn+. Then the
inequality

exp
(
Hn(y,u)−Hn(x,u)

)
≤ 1 +

n∑
i=1

ui(xi − yi) log(xi)

(26)
holds.

Proof. Since the weighted entropy function is differentiable
and exponentially concave as stated in Corollary 15, the
inequality in (5) holds which is equivalent to (26).

We can further sharpen (24), (25) and (26) by exploiting
the exponential concavity of 1

cn
Hn(x), as described in Theo-

rem 17. Hence, we derive

exp
(

1
cn

m∑
i=1

wiHn(xi)
)
≤

m∑
i=1

wi exp
(

1
cn
Hn(xi)

)
≤ exp

(
1
cn
Hn

( m∑
i=1

wixi

))
,

(27)

exp
(

1
cn
Hn(y)

) n∑
i=1

(xi − yi) log(yi)

≤ exp
(

1
cn
Hn(x)

) n∑
i=1

(xi − yi) log(xi)

(28)

and

exp
(

1
cn
Hn(y)− 1

cn
Hn(x)

)
≤ 1 + 1

cn

n∑
i=1

(xi − yi) log(xi) .

(29)
It is well-known that mutual information I2(β) of discrete

binary channels is given by

I2(z) = H
(
zγ1 + z̄γ2

)
− zH(γ1)− z̄H(γ2) (30)

for the transition matrix
( 1−γ1 γ1

1−γ2 γ2
)

with γ1, γ2 ∈ [0, 1]. The
entry in the xth row and the yth column of the matrix denotes
the conditional probability that y is received when x is sent.
The probability of the two input symbols are denoted by z and



1 − z, cf. [21], [22]. Note that the mutual information of bi-
nary symmetric channels (BSC), binary asymmetric channels
(BAC), and the one-bit quantizer are special cases of (30). The
corresponding capacity is derived in [23] and extended in [14]
by a decoder specific quantity. The next theorem helps to find
proper inequalities for such classes of channels.

Proposition 24. For the mutual information I2 of discrete
binary channels, the inequality

exp
(∑

i
wiI2(zi)

)
≤
∑

i
wi exp

(
I2(zi)

)
≤ exp

(
I2

(∑
i
wizi

)) (31)

holds for all zi, wi ∈ [0, 1] with
∑
i wi = 1.

Proof. Due to Theorem 19, the mutual information I2(z)
is exponentially concave. By the aid of (10) we infer the
statement.

Considering the generalized mutual information

In(z,γ1,γ2, . . .) = Hn

(∑
j

zjγj

)
−
∑
j

zjHn(γj) (32)

depending on the input distribution z for given probability
vectors γj . Since 1

cn
H(γ) is exponentially concave as stated

in Theorem 17, we can find lower and upper bounds for
In(z,γ1,γ2, . . .) by the aid of Corollaries 2 and 3 as follows.

Corollary 25. For the mutual information In of discrete
channels, the inequality chain

− cn
∑

i
zi log

(
1+ 1

cn
∇Hn

(∑
j
zjγj

)T(
γi−

∑
j
zjγj

))
≤ In(z,γ1,γ2, . . .)

≤ cn
∑

i
zi log

(
1− 1

cn
∇Hn(γi)T

(
γi −

∑
j
zjγj

))
(33)

holds for all probability vectors z,γ1,γ2, . . ..

VI. SIDE INEQUALITIES FROM EXPONENTIAL CONCAVITY

In the previous sections, we have investigated several in-
equalities and provided different proofs for them, from which
we easily can infer the following inequalities.

Proposition 26. The inequality

log2(x) ≤ (1− x)2

x
(34)

holds for all x > 0 with equality at x = 1.

Proof. Since the binary entropy is exponentially concave,
the quantity v(x) = H ′′(x) +

(
H ′(x)

)2 = log2
(

1−x
x

)
−

x−1(1 − x)−1 is non-positive. Moreover, discussing u(x) =
4+v(x) ≤ 0 along with its first and second derivatives reveals
that actually u(x) is non-positive. Substituting 1−x

x by x in
u(x) ≤ 0 yields the inequality under consideration.

Suppose that the weighted arithmetic, geometric, and har-
monic means are defined by

Anj=1(xj , wj) =
n∑
j=1

wjxj , (35)

Gnj=1(xj , wj) =
n∏
j=1

x
wj

j (36)

and

Hnj=1(xj , wj) =
( n∑
j=1

wj
xj

)−1

, (37)

for any x ∈ Rn and w ∈ Rn+ with
∑n
j=1 wj = 1. Then

the famous inequality chain Hnj=1(xj , wj) ≤ Gnj=1(xj , wj) ≤
Anj=1(xj , wj) is well-known, cf. [24]. One can find many
improvements for their relationship in the literature. Due to
the exponential concavity we have achieved a new mixed mean
inequality, which is in the vein of Henrici’s, Nanjundiah’s and
Sierpinski’s inequality [25], and is precisely stated in the next
proposition.

Proposition 27. Let X be a real m×n matrix with nonnega-
tive elements xi,j with

∑n
j=1 xi,j = 1 for all i. Let w ∈ Rm+

with
∑m
i=1 wi = 1. Then with cn from Theorem 17 we have[

Gnj=1

(
Ami=1(xi,j , wi),Ami=1(xi,j , wi)

)]1/cn

≤ Hmi=1

([
Gnj=1(xi,j , xi,j)

]1/cn
, wi
)
.

(38)

Proof. From Theorem 17, we know the exponential
concavity of the scaled entropy. Reminding the relationship
exp
(∑

k ρ(yk)
)

=
∏
k y
−yk

k , we infer

n∏
j=1

( m∑
i=1

wixi,j

) 1
cn

m∑
i=1

wixi,j

≤
( m∑
i=1

wi

n∏
j=1

x
−

xi,j
cn

i,j

)−1

,

from (27) which is equal to (38).
There are many exponentially concave functions, that are

important in communication theory. One of the famous ones
is the error-function

erf(x) = 2√
π

x∫
0

e−t
2

dt, (39)

that becomes exponentially concave in the form erf(
√
x) for

all x ≥ 0. Its complementary usually describes the bit/symbol
error probability of communication systems depending on
the square root of the underlying signal-to-noise ratio. This
example shows that exponentially concave functions can have
a crucial role also in communication theory.

VII. CONCLUSION

Exponentially concave functions seem to play an important
role in information theory. Since they are rarely discussed
in the literature, we have investigated their mathematical
properties along with their general applications. Especially
the self-information and the (scaled) discrete entropy have
been discussed and it has been shown that they are expo-
nentially concave functions. In addition, we have derived new
inequalities for the Kullback-Leibler divergence, the entropy
of mixtures of distributions, and the mutual information of
discrete channels.
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