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Abstract—In this work, we study an unmanned aerial vehi-
cle (UAV)-enabled wireless power transfer (WPT) system with
multiple ground users. We aim at solving the non-convex UAV
trajectory design problem which maximizes the minimal received
energy among all users by determining the UAV’s flying path
under given UAV speed constraints. To solve such intractable
problem, we propose a genetic algorithm (GA) based successive
hover-and-fly (SHF) scheme that iteratively searches the optimal
hovering points and optimizes the corresponding hovering time.
Moreover, we extend the study to scenarios with no-fly zones, for
which an improved GA based method with a penalizing strategy is
proposed accordingly. Numerical results confirm the performance
advantage of the proposed GA based algorithm in comparison to
the benchmark algorithms in prior works under a wide range of
system parameters.

Index Terms—Unmanned aerial vehicle (UAV), wireless power
transfer (WPT), trajectory optimization, genetic algorithm (GA),
energy fairness, no-fly zone (NFZ).

I. INTRODUCTION

Benefiting from their high mobility and reducing cost, un-
manned aerial vehicles (UAVs) are expected to be widely
applied in future wireless communication systems to realize the
quick deployment for various demand. By taking the advantage
of line-of-sight (LoS) aerial-to-ground wireless channels the
UAV-enabled wireless systems are able to improve the system
performance in terms of e.g., communication coverage [1],
[2] or data throughput [3], [4], compared to the conventional
terrestrial wireless systems [5]. On the other hand, UAVs can
also be applied as a mobile energy transmitter in the wireless
power transfer (WPT) systems to wirelessly charge the low-
power ground users, e.g., the passive sensors and Internet-of-
things (IoT) devices [6]–[8].

In recent years, the WPT technology has shown a significant
success in wireless networks [9], [10]. Motivated by this, the
UAV-enabled WPT system has been shown as a promising
scheme to provide a longer lifetime of low-power ground
users. Nevertheless, the trajectory design in UAV-enabled WPT
systems is a intractable problem especially when the energy
fairness is concerned. It is firstly studied in [6] within a one-
dimensional (1D) WPT system with two users, where a Pareto
boundary of the achievable energy region is characterized. A
general trajectory design is then extended to a two-dimensional
(2D) WPT system with multiple users in [8], where the heuristic
successive hover-and-fly (SHF) trajectory and the successive
convex programming (SCP) method are proposed. The heuristic
SHF design is based on a relaxed problem where the maximum
flying speed constraint is ignored, and thus results in sub-
optimal solutions. Although the SCP method can refine the
obtained heuristic SHF trajectories, it can only obtain the local
optimality and normally need a huge computational cost to have
an accurate quantization process.

On the other hand, genetic algorithm (GA) as a non-
deterministic optimization method has been used in many works
to search the quasi-optimal trajectories of the UAVs in recent
years [11]–[14]. Inspired by the genetic theory of Darwin
evolution, GA was developed by John Holland in the 1960s
[15] to solve the optimization problem via a iterative searching
process with the biology-like operations, e.g., the crossovers of
the chromosomes and the mutations of genes. Therefore, GA
has the low design complexity and good adaptability. Motivated
by this, we intend to solve the UAV trajectory design problem
in discussed WPT systems using the GA based approach, based
on the fact that the optimal trajectory of the relaxed problem
follows a multi-location-hovering structure [8]. It is noted that
the aforementioned works only consider the cases where the
UAV is not deployed as a communication node, and thus the
objective of these works is to find a smooth shortest path with
the given start and end points and the environment information.
Therefore, a specific design of the GA based approach is needed
to cope with the energy fairness concerned WPT systems.

In this work, within a UAV-enabled WPT system we intend to
maximize the average received power among the ground users
by designing the optimal trajectory of the mobile charger, i.e.,
the UAV, via the usage of the GA. The main contributions are
as following:
• In contrast to the designs [6], [8], using the heuristic

analytic solution based on the ignoring of the maximum
speed constraints, we propose a GA based SHF design that
iteratively searches the hovering points and optimizes the
corresponding hovering time to achieve a quasi-optimal
solution. Moreover, the proposed algorithm can solve the
problems within both 1D and 2D topology.

• In addition, an extended 2D UAV-enabled WPT sys-
tem with no-fly zones (NFZs) is investigated. Note that
the NFZs concerned trajectory design problem in UAV-
enabled WPT systems is still a open issue due to the ex-
tremely high complexity of geometry analysis. We design
a penalizing strategy to adjust the fitness of the GA so that
the algorithm can easily cope with the NFZs without the
analytic understanding of their geometry structure.

The numerical results in Section V indicate that the proposed
GA based approach outperforms the other benchmarks and
can enhance the system performance significantly under a low
maximum flying speed and short charging duration.

II. SYSTEM MODEL

We consider a WPT system with a single UAV as charger
and N users that are randomly and uniformly located on the
ground inside the charging area with width W . Note that the
charging area could be a 1D line, e.g., users are deployed along
a road or river, or a 2D square, e.g., users are located in the
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Figure 1. Illustration of the studied UAV-enabled WPT system in both 1D and
2D scenarios.

field or plain, as shown in Fig. 1. The UAV flies at a fixed
altitude H with a maximum flying speed V and has a charging
period T , where |T | = T and T is the maximum charging time.
We intend to investigate the WPT system both in 1D and 2D
scenarios. For the simplicity of the presentation, we formulate
the system in a general form with the coordinates presented as
a vector in the Euclidean space A. Thus, the coordinate of the
n-th user and the UAV at time t are expressed as cU,n ∈ A
and c(t) ∈ A, respectively, where n ∈ N = {1, . . . , N} and N
is the index set of all users. Considering the maximum flying
speed V we have ||ċ(t)||2 ≤ V,∀t ∈ T , where ċ(t) denotes
the first-order derivative of c(t). We assume that the channel
between the UAV and each ground node is LoS-dominated.
Therefore, we apply the free-space path loss model [3] in this
work. Specifically, at time t ∈ T the power gain of the channel
between the UAV and the n-th user is denoted as

hn(c(t)) = β0d
−2
n (c(t)) (1)

=
β0

||c(t)− cU,n||22 +H2
, (2)

where dn(t) is the distance between the UAV and n-th user
at the time t and β0 presents the power gain of the channel
at a reference distance of unit meter. Considering a constant
transmit power P of the UAV, the received radio frequency
(RF) power of n-th user at time t is thus expressed as

Qn(c(t)) = hn(c(t))P. (3)

We consider that the UAV is equipped with a omnidirectional
antenna. Consequently, each user receives the power continu-
ously during the whole charging period. Thus, the total received
energy of n-th user is written as

En =

∫ T

0

Qn(c(t))dt. (4)

Note that in practice the received RF signals are firstly
converted into direct current (DC) signals in order to charge
the batteries of users. This RF-to-DC conversion is normally
non-linear and the conversion efficiency depends on the power
and waveform of the received RF signals [16]. For simplicity,
in this work we consider the expressions in (3) and (4) to
present the received power and energy by ignoring the RF-
to-DC conversion process, as in [6], [8].

For the fairness concern of the studied WPT system with
multiple users, we intend to maximize the minimal received

energy among all users. Hence, the optimization problem of
the system is written as

max
C

min
n∈N

En (5a)

s.t. ||ċ(t)||2 ≤ V, ∀t ∈ T , (5b)

where C represents the set of c(t) ∈ A,∀t ∈ T . Due to the
objective form of minimum value in (5a), the problem in (5)
is intractable. Nevertheless, by introducing a auxiliary variable
E the problem in (5) can be reformulated as

max
C,E

E (6a)

s.t. E ≤ En, ∀n ∈ N , (6b)
||ċ(t)||2 ≤ V, ∀t ∈ T . (6c)

Note that the optimization problem in (6) is still intractable
due to the non-convex constraints. It has been shown in [6],
[8], the SHF trajectory with a multi-location-hovering struc-
ture is an effective solution of the problem. Specifically, the
trajectory consists of a sequence of finite hovering points and
corresponding hovering time. The UAV sequentially hovers at
each hovering point for the corresponding hovering time and
flies at the maximum speed between two neighbouring hovering
points. Then, the problem is transformed to find the optimal
hovering points and corresponding hovering time. Nevertheless,
the problem is still intractable due to the non-convex nature.
In [6], [8] a heuristic SHF design is proposed, which is
initially based on an extreme case where the maximum flying
speed constraint is ignored. Then, the obtained trajectory is
adjusted to a solution with the consideration of maximum speed
constraint. Thus, the obtained solution is not a global optimum.
Moreover, because of this extreme case basement the algorithm
separately discusses the situations with large and small total
charging time T , which leads to a low performance under the
scenarios with low maximum flying speed. Furthermore, an
SCP method is also proposed in [8] to refine the obtained
trajectory of the heuristic SHF design via the quantization
of the path or time. Nevertheless, this SCP based trajectory
design can only achieve a local optimality with a extremely
accurate quantization, and thus leads a high computational cost.
An efficient low-complexity solution to the trajectory design
problem is missing. Note that the optimal trajectory follows the
SHF structure. The trajectory design can be fully determined as
long as the hovering points the corresponding hovering time are
obtained. This motivates us to propose a GA based approach
with significant low-complexity to address such SHF trajectory
design problem.

III. GA BASED SHF TRAJECTORY DESIGN

In this section, we aim at solving the optimization problem
in (6) via a GA based SHF trajectory design. The proposed
algorithm searches the coordinates of the hovering points
following the GA and optimizes the corresponding hovering
time via solving a linear problem (LP).

A. GA based adaptive searching algorithm

We consider a SHF trajectory with K hovering points. The
coordinate vector and hovering time of the k-th hovering point
are denoted as cH,k and tH,k respectively, where k ∈ K =
{1, . . . ,K} and K is the index set of all hovering points and
hovering time. The GA based searching algorithm searches the



optimal hovering points iteratively. In GA we call each iteration
as a generation. In each generation, the environment contains a
fixed population of M entities which are the expression of the
corresponding chromosomes. Let l > 0 denote the generation
number. Then, the sequence of hovering points of the m-th
entity in the l-th generation is encoded into a chromosome in
a phenotype way, denoted as Z(m,l) = {c(m,l)

H,1 , . . . , c
(m,l)
H,K },

where m ∈ M = {1, . . . ,M} and M is the index set of
all entities. Moreover, the set of all entities in l-th generation,
i.e., Z(m,l),∀m ∈ M, is denoted as Z(l). The evolution of
each generation includes 4 processes, which are fitness update,
selection, crossover and mutation. The details of each process
are explained in the following.

1) Fitness update: In each generation we firstly update the
fitness scores of all entities. The fitness indicates how good
the performance of the entity is. Therefore, the fitness should
reflect the objective of original problem in (5). The calculation
of the fitness function for each entity includes 5 steps as shown
in the following.
• Find shortest path: For a given set of hovering points

we firstly arrange a sequence of points so that the total
flying distance is shortest. This shortest path can be
found via solving a traveling salesman problem (TSP),
as in [8]. Specifically, by introducing a dummy hovering
point that has zero distance to any other hovering point,
we formulate a TSP over these K + 1 points. After
solving the TSP we remove the two paths connected to
the dummy point and obtain the desired sequence of the
m-th entity in the l-th generation, which is denoted as
Ẑ(m,l) = {ĉ(m,l)

H,1 , . . . , ĉ
(m,l)
H,K }. Let D(m,l)

F be the obtained
shortest flying distance of the m-th entity in the l-th gen-
eration. Then, the corresponding total flying time T (m,l)

F
is calculated as T (m,l)

F = D
(m,l)
F /V .

• Revise invalid trajectory: Note that if the obtained
T

(m,l)
F > T the trajectory of the m-th entity is invalid. In

this case we revise the invalid trajectory in the following
way. First, we find the single optimal hovering point
c?S ∈ A, obtained as

c?S = arg max
c

(
min
n∈N

Qn(c)

)
, (7)

by applying an exhaust search over Ã, where Ã is the
convex hull of the coordinate set of cU,n,∀n ∈ N . Then,
the coordinates in Z(m,l) and Ẑ(m,l) are downscaled to
obtain a valid trajectory. This update is obtained as

c′ = αc+ (1− α)c?S, ∀c ∈ Z(m,l) ∪ Ẑ(m,l), (8)

where α = T

T
(m,l)
F

is the scaling factor, c and c′ represent
the coordinates before and after the scaling, respectively.

• Calculate received energy during flying: After the flying
sequence is fixed, we can calculate the received energy
for each user during flying. Since the trajectory is a
combination of piece-wise lines (a straight line in 1D and a
polyline in 2D), the received energy in the l-th generation
by the n-th user during flying is written as

E
(m,l)
F,n =

K−1∑
k=1

∫ ĉ
(m,l)
H,k+1

ĉ
(m,l)
H,k

β0P

||c− cU,n||22 +H2
dc. (9)

• Optimize the hovering time: In this step we optimize the
hovering time of all hovering points in order to maximize

the minimal received energy among all users. With the
obtained ordered hovering points and received energy
during flying the optimization problem for hovering time
is a linear problem (LP), which is expressed as

max
t
(m,l)
H ,E(m,l)

E(m,l) (10a)

s.t. t
(m,l)
H,k ≥ 0, ∀k ∈ K, (10b)∑
k∈K

t
(m,l)
H,k = T − T (m,l)

F , (10c)∑
k∈K

t
(m,l)
H,k Q

(m,l)
k,n + E

(m,l)
F,n ≥ E(m,l),∀n ∈ N ,

(10d)

where for the m-th entity in l-th generation t
(m,l)
H =

[t
(m,l)
H,1 , . . . , t

(m,l)
H,K ] and E(m,l) are the hovering time vector

of all ordered hovering points and the auxiliary variable,
respectively, and

Q
(m,l)
k,n =

β0P

||ĉ(m,l)
H,k − cU,n||22 +H2

(11)

is the RF power between the n-th user and the k-th
hovering point of the m-th entity.

• Calculate fitness: Note that the obtained optimum E(m,l)?

via solving the LP in (10) is the optimal minimal received
energy among all users. Then, we set the fitness as minimal
average received power among all users, which is obtained
for m-th entity in l-th generation as S(m,l) = E(m,l)?/T .

2) Selection: In each generation the best γ of entities in
terms of their fitness are chosen to reproduce next generation,
where γ ∈ [0%, 100%] is a percentage number. We denote the
set of chosen entities in l-th generation as Z̃(l). Note that the
selection with a larger γ can keep the diversity of the population
but may incur slow convergence or even the divergence of the
algorithm. Conversely, the selection with a small γ may lack of
the diversity and thus the algorithm converges to a local point.

3) Crossover: The entities of Z̃(l) reproduce the (l + 1)-
th generation via crossover process. Specifically, during each
crossover process two entities are chosen from Z̃(l) according
to the ratio between their fitness and the total fitness, i.e., the
probability of m-th entity in the l-th generation to be chosen
is calculated as P (m,l) = S(m,l)∑

m∈Z̃(l) S(m,l) . Then, a new chromo-
some is generated via the crossover of the chromosomes of two
chosen entities. Each fragment of the child chromosome comes
from one of the parent corresponding chromosome fragments
with a probability of 0.5. This crossover process happens M
times in each generation and thus the next generation, i.e.,
Z(l+1), is created with the population of M .

4) Mutation: It is noted that in the crossover process all
genes of the child generation are directly inherited from the
parent generation, which limits the searching domain. In order
to ensure the diversity of the genes and the adequate exploration
of unknown genes, the mutation process is applied during
the reproduction of each generation. In l-th generation with
a given mutation rate µ ∈ [0, 1] the k-th segment of the m-
th chromosome, i.e., c

(m,l)
H,k , has a possibility of µ to mutate

to a random vector c̃
(m,l)
H,k ∈ A. We define a mutation range

denoted as dr and set ||c̃(m,l)
H,k − c

(m,l)
H,k ||2 ≤ dr. Note that at

the first few of generations the mutation range should be large
to enable a wide exploration of unknown genes. Nevertheless,



with the increment of generations the mutation range should
gradually decrease to reduce the searching area and avoid the
divergence. Therefore, we set a adaptive mutation range for the
l-th generation, denoted as d(l)r = max{W2l , dmin}, where dmin
is the minimal mutation range.

B. Combined LP for optimization of hovering time

Note that the LP in (10) should be solved for all entities
in a population, which incurs a long running time when M is
large. Fortunately, the LPs for different entities are independent.
Therefore, we can form them as one LP and thus in each
generation the algorithm only needs to solve one LP. The
combined LP is expressed as

max
T(l)

H ,E(l)

∑
m∈M

E(m,l) (12a)

s.t. t
(m,l)
H,k ≥ 0, ∀k ∈ K, ∀m ∈M, (12b)∑

k∈K

t
(m,l)
H,k = T − T (m,l)

F , ∀m ∈M, (12c)∑
k∈K

t
(m,l)
H,k Q

(m,l)
k,n + E

(m,l)
F,n ≥ E(m,l),

∀n ∈ N , ∀m ∈M, (12d)

where T(l)
H

(
E(l)

)
represents the set of t(m,l)

H

(
E(m,l)

)
,∀m ∈M

in the l-th generation. The full GA based adaptive searching
algorithm is shown in Algorithm 1.

Algorithm 1 GA based adaptive searching algorithm for SHF
trajectory design. L denotes the generation number when the
algorithm converges.

1: Find single optimal hovering point c?S via (7)
2: Randomly create initial generation Z(1) in Ã
3: for l = 1, . . . , L do
4: for m = 1, . . . ,M do
5: Find shortest path Ẑ(m,l) and corresponding T (m,l)

F
6: if T (m,l)

F > T then
7: Revise trajectory according to c?S via (8)
8: end if
9: Calculate E(m,l)

F,n ,∀n ∈ N via (9)
10: end for
11: E(l)?,T(l)?

H ← solve (12)
12: Update S(m,l),∀m ∈M
13: Select the best γ to obtain Z̃(l) according to S(m,l)

14: Crossover to reproduce Z(l+1)

15: Mutation with rate µ and range d(l)r

16: end for
17: return

{
Ẑ(L)?, t

(L)?
H

}
IV. 2D WPT SYSTEMS WITH NO-FLY ZONES

In this part we extend the 2D WPT system with the consid-
eration of NFZs. In the practice the WPT system may contain
the NFZs, e.g., military restricted area or danger area for flight,
such that the UAV is forbidden to fly through them. In this
respect, the designed UAV trajectory should not cross through
the NFZs. We consider Q number of circular NFZs with all
equal radius RNFZ that are randomly located in our system area
A. Let D be the coordinate set of NFZs. Then the coordinate
set of the feasible area for the trajectory is thereby F = A\D.

The trajectory design with the consideration of NFZs makes
the problem much more complex to obtain a analytic solution.
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Figure 2. Convergence behavior of the proposed iterative algorithm for various
maximum flying speed V .
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Figure 3. Performance vs. various charging duration T and maximum flying
speed V .

Nevertheless, our proposed GA based algorithm can easily
solve it with a small update of fitness calculation. Firstly
the initial generation is created within F . Then, for the m-
th entity in l-th generation, let D(m,l)

NFZ be the total length of
the intersect segments between its trajectory and the NFZs, the
corresponding fitness is updated as

S′ = S

(
1− D

(m,l)
NFZ

D
(m,l)
F

)
, (13)

where S and S′ are the corresponding fitness before and after
the update, respectively. Note that instead of setting the fitness
of trajectory that passes through the NFZs directly as zero, the
proposed update penalizes the fitness according to the ratio of
the length between the invalid segments and the total flight path,
which ensures that the algorithm can adjust the trajectory that
only passes through the NFZs slightly. The rest of the algorithm
is the same as Algorithm 1.

V. SIMULATION RESULTS

In this section, the proposed GA based SHF trajectory design
for the considered WPT system is numerically evaluated in
terms of the minimal average received power among all users.
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Figure 5. GA based trajectory design for various number of NFZs.

The resulting system performance is averaged over 20 realiza-
tions. Unless otherwise is stated the default values of simulation
parameters are as following: β0 = −30dB, P = 40dBm,
H = 5m, T = 40s, W = 30m, N = 5, K = 6, M = 100,
γ = 20%, µ = 0.1 and dmin = 0.05W .

A. Algorithm convergence
As the proposed GA based approach is a iterative searching

solution, we firstly present the convergence behavior. In Fig. 2
the convergence behavior is depicted for the cases with different
maximum flying speed V . The curves show the minimal
average received power among users, i.e., the best fitness by the
definition, of each generation. It is observed that the proposed
GA based algorithm has significant improvements in the first
few of generations and converges in 20-40 generations. It is
also shown that the algorithm with small maximum flying speed
needs less generations to converge. This is since under small
maximum flying speed limit the optimal trajectory is simpler so

that the searching complexity is lower. Based on the observed
various convergence behavior in different scenarios we set a
checking of convergence threshold as the stop condition of the
algorithm.

B. Algorithm comparison
In this part we evaluate the proposed GA based algorithm

with the comparison to the heuristic SHF solution and SCP
solution that are proposed in [8]. It is worth to mention that
the SCP method requires a time quantization as the accurate of
the searching algorithm. We set the quantization of distance for
the exhaustive search as ds,min = 0.01m and the corresponding
time quantization as ts,min = ds,min/V . Note that this quantiza-
tion process results in a very large computational complexity.
Therefore, we only perform this SCP method in the cases with
maximum flying speed V = 1m/s.

1) Performance comparison: In Fig. 3 the system perfor-
mance in terms of the minimal average received power among



all users related to the charging duration T and maximum
flying speed V is depicted. The upper bound is achieved with
the UAV’s maximum speed constraints ignored. It is firstly
observed that the proposed GA based algorithm outperforms
the heuristic SHF solution and SCP solution within all range
of charging duration and maximum flying speed. A significant
gain is observed for the case with V = 1m/s and the range of T
between 10s and 50s. This is since the heuristic SHF solution
and SCP solution are based on the trajectory with the maximum
flying speed constraints ignored. When the maximum flying
speed is low, e.g., 1m/s, and the charging duration is short,
the optimal trajectories are no longer similar as the trajectories
without flying speed limit. This will be further explained in
next part. On the other hand, the performance of the proposed
algorithm and the heuristic SHF solution get close with large
maximum flying speed and converge to the upper bound when
T becomes large.

2) Trajectory comparison: In Figs 4(a) and 4(b) the trajec-
tory examples obtained from the proposed GA based approach,
the heuristic SHF and SCP solutions with low maximum flying
speed (V = 1m/s) are depicted. The corresponding performance
are also given in the legend. It is observed that in both scenarios
the heuristic SHF trajectories and the proposed GA based
SHF trajectories are quiet different, which leads the gain of
the performance as observed in Fig. 3. It is clear that the
heuristic SHF trajectories are adjusted from the upper bound,
i.e., trajectories without flying speed constraints, according
to the single optimal point, which only gives local optimal
solutions. Although the trajectories of the SCP method and
the the proposed algorithm are very close to each other, our
algorithm’s performance is still better than the SCP. Note that
the hovering points number in the heuristic SHF trajectories is
automatically searched. Therefore, the heuristic SHF trajectory
in Fig 4(b) with only 4 hovering points is clearly a bad design
due to the flaw of the algorithm.

C. Trajectory design with NFZs

In this part we study a NFZ contained 2D WPT system with
N = 5 users. The UAV is with maximum flying speed V =
10m/s and charging duration T = 40s. The radius of NFZs
are all equal to RNFZ = 3m. We gradually increase the NFZ
number Q and set the location of any new NFZ on the current
best trajectory in order to enforce the algorithm to find a new
valid trajectory. As the existence of NFZs makes the optimal
trajectory more complex, we set K = 8 hovering points to
ensure a adequate flexibility of trajectory design. In Figs 5(a)-
5(g) the obtained trajectories under various number of NFZs
Q using proposed GA based approach are depicted. Moreover,
the corresponding fitness, i.e., the minimal average received
power among users, of these trajectories are shown in Fig 5(h).
It is observed that the best trajectory in the scenario without
any NFZ is a direct path passing through all users. As the
number of NFZs is increasing, the algorithm effectively finds
new valid trajectories. The fitness decreases with the increment
of the NFZs as expected. Nevertheless, in the scenarios with
less NFZs the performance still keep a relatively good level,
e.g., in the case with 3 NFZs the fitness only drops 9.1%. It
is also shown that the obtained trajectories are in many case
along the boundaries of the NFZs to achieve a optimal path
around the NFZs. Note that the proposed algorithm does not
contain any analytic understanding of the geometry structure

in the NFZs contained space. This indicates the success of the
proposed fitness update method in (13).

VI. CONCLUSION

In this paper, we studied a trajectory design problem in a
UAV-enabled WPT system with multiple ground users. We
intend to maximize the minimal received energy among all
users. We proposed a GA based solution to the trajectory design
problems in both 1D and 2D scenarios. The numerical results
show that the proposed algorithm outperforms the heuristic and
SCP that are proposed in the previous works in all range of
charging duration. Under a short charging duration and a low
maximum flying speed, the results also indicate a significant
gain of the proposed GA based method compared to the
heuristic and SCP solutions. Furthermore, a NFZs contained
2D WPT system is extended and a revised GA based method
is proposed. The numerical results show that the proposed
GA based method can effectively search the quasi-optimal
trajectories without analyzing the location and the geometry
structure of the NFZs.
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