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Abstract. Packet radio networks must be able to han- 
dle rapid changes in connectivity, e.g. for a continuous 
data exchange in inter-car communication. In a concur- 
rent slot assignment protocol this is achieved by random 
access to time synchronized frames and exchange of in- 
dividual channel observation by each of the involved 
stations. An important question is how fast this syn- 
chronization tool works. We investigate its performance 
by analyzing the (random) first stable time in a Markov 
chain model. Numerical results for a variety of param- 
eters are given. 

1.  Introduction 

We consider a set of IC mobile stations which are to be 
connected by radio communication such that each of 
them is able to transmit data to  each neighbour on the 
same frequency. Any stations with common neighbours 
cannot transmit data in the same slot due to superimpo- 
sition. The transmission (or receiving) time is devided 
into frames of fixed length where overall time synchre 
nization is assumed. Following the CSAP protocol [3] 
each frame consists of N slots which may be used by 
each of the stations to transmit blocks of data. Each 
slot contains a package of N bits describing the individ- 
ual channel observations by CRC-checking followed by 
a message block. 

Each station transmits “1”as the j-th bit in the 
channel synchronization block if its check yields an iden- 
tifiable message in the j-th slot or if the j-th slot is used 
by the station itself and “0” otherwise. “0” may be in- 
terpreted as “slot unused” or alternatively as “signal 
deletion’’ by simultaneous transmission of two or more 
other stations. The channel partitioning is depicted in 
Fig. 1. 

If a station is able to recognize its slot as error free 
for transmission it continues transmitting in the same 
slot in subsequent frames, otherwise it switches to a 
slot which is recognized as unused or overloaded. Cor- 
respondingly, overloaded slots will be left by stations 
involved and the system tends towards a stable uncol- 
lided slot assignment. 

+ 
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Slot 1 Slot2 Slot N 

Fig. 1. Channel partitioning 

An analogous strategy is applied in the DCAP pro- 
tocol [2] or by R-ALOHA [l] for fully connected radio 
networks where each station is able to transmit data to 
each other directly. Consequently this procedure may 
be analyzed by the same methods. 

In this paper, under a certain probabilistic model, 
we investigate how fast a stable state will be achieved. 
Furthermore, we consider corresponding error probabil- 
ities. Chapter 2 deals with a precise description of slot 
change behaviour. In Chapter 3 we introduce the prob- 
abilistic model, and conclude in Chapter 4 with theo- 
retical analyses and reconfirm our results by numerical 
examples and simulations. 

2. Slot changes bv bit Dattern 

We assume a cluster of IC stations such that any two sta- 
tions are directly connected to each other or learn about 
their slot assignment by at least one common neighbour. 
Once a complete frame has passed by, station s is able to 
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build up a bit pattern of the communication behaviour 
as follows. Define the binary variables b,i, 1 5 i 5 N, 
bY 

1, 

1, if slot i is used by s itself, 
0, otherwise. 

if station s receives a clear signal from 
any other in slot i ,  

b,i = 0 may be due to superimposition in slot i or ab- 
sence of any HF-carrier. This individual bit pattern is 
transmitted by station s during the next frame in the 
chosen slot. If station s does not collide its bit pattern 
is received and evaluated by all other stations. 

The same procedure is carried out by each of the 
stations and the corresponding information is transmit- 
ted in the communication bit block. After a complete 
frame, a binary N x N information matrix C(s) = 
( ~ i j ( s ) ) ~ < ~ , ~ ~ ~  is available for each station s where for 
l l s 5 k  

b t j ,  if slot i is used by station t uncollid- 
edly, t # s, 

b , j ,  if station s uses slot i itself, 
0, otherwise, 

Let us assume that station s transmits in slot i .  
Applying the logical OR to the elements of each column 
of C(s)  in the following way 

1 5 j 5 N, yields 

1, if slot j is used by exactly one station, 
0, if slot j is superimposed or unoccupied. E j ( S )  = 

b,i = 1 holds since station s transmits in slot i. In case 
that (Ei(s) AHD b,i) = 1 the slot choice of station s does 
not lead to a collision with any other and its transmis- 
sion works. The result (Ei(s) AHD bsi)  = 0 shows that a 
collision has occured for station s, and it has to change 
its slot in the next frame to achieve correct communi- 
caton. Available slots may be detected by Ej(s) = 0, 
i.e. collided or unused ones. 

Consequently each station may identify all slots j 
which are occupied correctly by just one transmitter 
(Ej(s) = 1) and slots which are either unused or over- 
loaded (Cj(s) = 0). This also holds true for the slot 
station s presently uses itself. 

But this merely works under the assumption that 
at least two stations are not colliding with any other. In 
case that all stations except of one collide the situation 
shows up somewhat different. 

Let us assume that station s is transmitting in slot 
i and the other ones t # s are involved in collided 
slots j ( t ) ,  j ( t )  # i. In this case the information ma- 
trix C(s) consists of ( b , l , .  . . , b r ~ )  as i-th row and all 
other entries are 0. This results in (El(s),  . . . , E N ( s ) )  = 
(0,. . . ,O). All other stations t # s receive either the 
bit string ( b 8 1 , .  . . , b , ~ )  as the i-th row of C(t )  where 
b8j(r)  = 0,  if they are connected with station s, or other- 
wise ci, ( t )  = 0 for all j = 1, . . . , N. If t # i and .t # j ( t ) ,  
1 5 t 5 N, then, because of superimposition, cdj( t , ( t )  = 
0 holds. In fact, (El(t) ,  . . .  EN(^)) = ( O , . .  . ,O) for all 
t = l , . . . , k ,  t # s .  Then ( E l ( s ) , . . . , E ~ ( s ) )  = (O,...,O) 
holds for all stations 8,  and in the next frame each of 
them will choose a new slot. 

The case that all stations are using collided slots is 
even worse, but, as may be seen easily, yields the same 
result of a global slot change. 

In BUITIKUUY, if less than two stations are able to 
transmit error free the whole group recognizes each slot 
as overloaded or unused, and in the next frame each 
station employs an arbitrary new slot for transmission. 
On the other hand, if two or more stations transmit 
without collisions then uncollidedly used slots may be 
detected by each station of the group. These will not 
be affected by future slot changes. 

3- 
The relevant quantities to describe the behaviour of the 
transmission system are 

the number of unused slots, 
the number of slots occupied by exactly 
one station, 
the number of slots superimposed 
by at least two stations, 

U E No : 
U E No : 

w E No : 

where obviously U + U + w = N .  Under our assump- 
tion of complete reachability for a group of k stations, 
k 5 N, and a perfect channel we obtain the additional 
restrictions 0 5 w 5 l k / 2 J ,  0 5 U 5 k - 2w, and if 
U < k then w 2 1. Here 1.1 denotes the largest integer 
less than or equal t o  a E R. 

These conditions may be equivalently transformed 
to 

0 5 U, w ,  U + 2w 5 k, U + k(w - 1) 2 0. 

By this, the state space which completely describes the 
slot change behaviour is 

X = {Z = (u,u,w) I U , U , W  E No, U + U  + W  = N, 
A 

U + 2w 5 k, U + k ( w  - 1) 2 0) 
(1) 

716 

I- - I I I  



h 

and exactly one state 2' = ( N  - k, k, 0) E X charac- 
terizes the transmission system as stable which _means 
that all stations make use of different slots. X is a 
grid in a two dimensional flat of R3. In this sense it is 
overparametrized, but the following considerations are 
clearer by the above not:tion. 

The cardinality of X may be determined by denu- 
merating all pairs of integers ( 2 w )  which satisfy the 
inequalities in the definition of X .  It holds 

This number increases quadratically with k but remark- 
ably does not depend on the number N of available 
slots. 

In the following we are interested in the number of 
frames which have to pass by until perfect communica- 
tion is achieved. Thus, we may neglect the behaviour 
within colliding groups and restrict our attention to  the 
number v of correctly occupied slots. From ( 1 )  we rec- 

The distribution of (SI, . . . , S N )  is symmetric in permu- 
tations of the indices such that for all v E X 

P ( X  = v )  
N !  

( N  - v)!u! P(Si, . . ,SN-,  E {0,2,. . . , k}, - - 

1 1 

(4) 
where h(k1, . . . , k~-,,) denotes the product of factorials 
of the numbers of identical indices in kl, . . . I k N - , .  If 
the set of admissible indices in the above sum happens 
to be empty we define its value as zero. 

ognize 
A special case of (4) may be of interest. If v = k 

we have the probability that no slot is occupied twice. 
Evaluating the above formula we obtain P(X  = k) = 
(N-Tj!Nk which is well known from the so called "coin- 
cidence Or birthday problem" ('p. t4]). 

(3) X = { 0 , 1 , .  . . , k - 2, k} 

as the relevant state space for this problem. 
We assume that initially each of the k stations inde- 

pendently chooses any of the N slots with probability k. This yields a random event in the state space X 
which is modelled by a random variable 

For N, k E N, k 5 N ,  and v E No let us generally 
introduce the function 

N !  k! 
U! N k  

f ( N ,  k, U )  = -. with the interpretation X = v ifjust v slots are occupied 
1 1 c kl! . - . k ~ - ~ !  h ( k i , . .  ., kN-u),  

correctly. (a,d, P )  is an appropriate probability space 
and X is endowed with y ( X ) ,  the set of all subsets of 

k i < . . . < k N - . €  {0,2 ,... , k }  
ki+...+kN -.=k-U X, to form a measurable space. 

We have to investigate the distribution of X ,  and ( 5 )  . ,  
for this purpose introduce random variables SI,. . . , SN 
with values in { 0 , 1 , .  . . , k} and the interpretation 

if 0 5 v 5 k 5 N ,  and f ( N ,  k ,  v )  = 0, otherwise. 

If k and N are fixed f represents a discrete density 

Si = j : slot i is used by j stations, 
function with support No which coincides with (4) on 
X. 

l < i < N ,  0 5 j 5 k ,  k 5 N .  
There is no basic problem to write a computer sub- 

routine which calculates the function f ( N ,  k, v )  for ad- 

standard part is to enumerate the summation indices in 
(5) efficiently. The following procedure (in a PASCAL- 
like notation) solves this task for k: array [I. .VI 
of integer with U: =U-v, r: =k-v, and initial value 
sum:=o. A first call nexttupel(u-1) yields all in- 
dices in (5). 

It is we11 known that 'he random vector (S1, . . . > S N )  missible parameters N ,  k E N, E No. The only non- 
follows a multinomial distribution with 

1 - k! 

kl, . . .  k ~ € N o ,  ~ ~ l k ; = k .  

'('1 = '11.'. t S N  = ' N )  = kl!. . . k N !  ~k 7 
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procedure next tupe l ( j :  i n t ege r ) ;  
var i,l: in teger ;  
funct ion rucsr(m: in teger ) :  in teger ;  
begin 

end; 
begin 

i f  m=O them sucsr:=m+2 e l s e  sucsr:=m+l; 

i f  sum+(u-j)*sucsr(h[j]) <= r-I then begin 
1 : =sucsr (h[j] ) ; sum: =sum-hCjl+ (U-j *l; 
for i :=j  t o  U-1 do h [ i l : = l ;  
h [U] : =r-sum; j : =U-I ; 

end e l s e  begin 
sura: =8un-k Cjl ; j : = j-1; 

end ; 
i f  j >= I then next tupe l ( j1 ;  

end; 

In the following we assume that f ( N , k , v )  may be 
evaluated at arbitrary precision. 

We now come back to the dynamic properties of the 
communication system. To describe the step by step 
behaviour a sequence of random variables {X,},,=N,, is 
used each satisfying X ,  : (Q, A, P )  -, ( X ,  ? P ( X ) ) ,  n E 
No. X ,  denotes the number of slots occupied by just 
one station in the n-th step. 

The initial step already has been described: each 
station randomly chooses any slot. Thus, the initial 
distribution of the system is given by 

N 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

60 

70 

80 

90 

100 

k 

P(Xo = 110) = f(N, k, W O ) ,  WO E X. (6) 

The state achieved in each step only depends on its 
direct predecessor such that the sequence {X,},EN~ 
forms a Markov chain. The transition behaviour is de- 
scribed in Chapter 2. In each step all colliding stations 
randomly choose any slot out of the superimposed or 
unoccupied ones (e.g. for station s these are all slots 
with E,(s) = 0). If there are less than two uncollided 
stations then all will choose a new slot. Thus, for all 
u,+1, U, E X the corresponding transition probabilities 
from v, to un+l are given by 

with f from ( 5 ) .  
Hence the slot change process of a connected k- 

group of stations may be described by a homogeneous 
Markov chain with state space (3), initial distribution 
(6), and transition probabilities (7), which all may be 
calculated by evaluating the function f. 

3.70 
3.39 
.. 
.. 
.. 
. .  
.. 
.. 
.. 
.. 
.. 
.. 
.. 
* .  

.. 

. .  

1.92 
0.63 
4.82 
3.14 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 

1.61 
0.42 
2.77 
0.69 
5.62 
3.26 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
.. 

1.46 1.37 1.31 1.27 1.24 1.21 1.19 1.16 1.14 1.12 1.11 1.10 
0.34 0.29 0.25 0.22 0.20 0.18 0.17 0.14 0.12 0.11 0.10 0.09 
2.32 2.10 1.96 1.86 1.78 1.71 1.66 1.57 1.51 1.46 1.41 1.38 
0.46 0.38 0.34 0.33 0.32 0.31 0.31 0.30 0.29 0.27 0.26 0.25 
3.38 2.83 2.54 2.36 2.23 2.14 2.06 1.95 1.87 1.80 1.74 1.70 
0.76 0.53 0.42 0.36 0.31 0.28 0.27 0.25 0.25 0.26 0.26 0.27 
6.22 3.85 3.23 2.90 2.68 2.52 2.41 2.24 2.14 2.06 2.00 1.94 
3.32 0.81 0.56 0.46 0.41 0.36 0.32 0.26 0.23 0.21 0.20 0.20 
.. 6.68 4.24 3.57 3.21 2.97 2.79 2.54 2.38 2.27 2.19 2.13 

3.37 0.84 0.58 0.47 0.42 0.39 0.34 0.29 0.25 0.21 0.19 
.. .. 7.06 4.57 3.86 3.47 3.21 2.88 2.66 2.50 2.38 2.29 

3.40 0.86 0.60 0.48 0.41 0.36 0.34 0.31 0 .27  0.24 
.. .. .. 7.39 4.85 4.12 3.70 3.23 2.95 2.75 2.60 2.48 

3.42 0.88 0.61 0.50 0.38 0.34 0.33 0.31 0.29 
.. .. .. .. 
.. .. .. . .  
.. .. .. .. 
.. .. .. . .  
.. .. .. .. 
.. .. .. .. 
.. .. .. . .  
.. .. .. .. 

7.67 5.10 4.35 3.62 3.25 3.01 2.83 2.69 
3.43 0.89 0.62 0.44 0.35 0.31 0.31 0.31 
.. 7.93 5.33 4.11 3.58 3.26 3.06 2.90 

3.45 0.90 0.51 0.41 0.33 0.29 0.29 
.. . . 8.15 4.74 3.97 3.55 3.28 3.10 

9.46 0.64 0.46 0.38 0.31 0.28 
.. .. . . 8.54 5.08 4.27 3.82 3.53 

3.47 0.65 0.46 0.39 0.35 

. .  . .  . .  .. 8.87 5.37 4.53 4.06 
3 .48  0.66 0.47 0.38 

.. .. .. .. . . 9.16 5.62 4.76 
3.49 0.66 0.48 

. .  . .  . .  .. .. . . 9.41 5.85 
3.50 0.67 

.. .. .. .. .. .. . . 9.64 
3.51 

Table 1. Expected values and variances (below) of Sync(N, k) 
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4. First steD analysis 

As described in Chap. 3 perfect communication works 
whenever k E X is achieved by the system. From (7) 
we see that k is an absorbing state since for all 21 E X 

P(X,+I = 21 I x, = k) = f ( N  - k , O , O )  = 1. 

The number S N , ~  of frames and corresponding time 
units passing by until the system realizes this stable 
state for the first time is a discrete random variable 

S N , k = m i n { n E N o I X , = k } .  (8) 

In the following the expectation and variance of 
S N , ~  will be determined. For this purpose let II = 
(p i j ) i , jEx  denote the transition matrix of the Markov 
chain { X n } n ~ ~ o  where pij = P(Xn+l = j I X ,  = 
i), i , j  E X (independent of n) is determined by (7). 
The initial distribution is characterized by the stochas- 
tic vector p = ( P ( X 0  = 0),  . . . , P(X0 = k - 2 ) , P ( X o  = 

Let g and fi denote the (k - 1)-vector and (k - 1) x 
(k - 1)- matrix respectively which are obtained from p 
and n by deleting the last row and column, i.e. 

k>>. 

F =  ( P ( X ,  = O), . . . , P(X0 = k - 2)) ,  - n = ( p - )  '1 O < i , j < k - 2 '  

- 
If the fundamental matrix (Zk-1 -II) is nonsingular 

the expectation of s N , k  from (8) may be calculated by 
(CP. [SI, p.351) 

00 - -1 
E ( S N , k )  = CFfiflk-1 = F ( z k - 1 -  n) l k - 1  (9) 

f=1 

where Zk-1  denotes the (k - 1) x (k - 1)-identity matrix 
and l k - 1  the (k - 1)-vector with all components one. 
From (9) we derive the expectation of the first passage 
time into perfect synchronization as 

E(Sync(N, k)) = E(S,v,k) + 1. (10) 

The variance of Sync(N, k) is determined by anal- 
ogous methods. If ( I k - 1  - n) is nonsingular it holds 
that 

- 

V(Sync(N,L)) = W & k )  - ( w N , k ) ) 2  

. ,  - -2  - -1 = F 2 n 4 - 1  - n) + (Zk-1 - n) )Ll ( -( 
- (F(ZL1 - ii)-11k-1)2. 

We have carried out the extensive calculations in 
(10) and (11) for values of N = 5,. .. ,100 (5), and 
k = 5,. . . ,100 (5). The corresponding expectations and 
variances are listed in Table 1. 

The results are very encouraging. Even if the chan- 
nel is overloaded by as many stations as slots are avail- 
able (k = N )  the increase in synchronization time is 
quite moderate. The corresponding values may be read 
off the diagonal and range from 3.7 for k=5 to  9.64 for 
k=lOO. The corresponding variances show up a simi- 
lar slowly increasing tendancy. A realistic example is 
N = 100 and k = 50. Here we have an expected first 
synchronization time of merely 3.1 frames with a low 
variance 0.28. Comparable results were obtained by 
preliminary simulation studies. 

A good feeling of the overall behaviour may be 
gained from the graphical representation in Fig. 2 where 
the (N,k)-values in the plane are plotted against the 
corresponding expected values of Sync(N, k) on the z- 
axis. 

9.0 

7 . 0  

5.0 

3,O 

I . (  

- t  . 

Fig. 2. 
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Expected values of the first synchronization time 

5. Conclusions 

In summary, the concurrent slot assignment protocol 
and related systems work very well in building up non- 
central communication networks. The results may serve 
as a worst case bound for groups which are not com- 
pletely connectable. The same holds true with k = 
k 1 +  k2 when two stable groups with 61 and k2 stations 
respectively are mixing since they are moving towards 
each other. 
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Future work will be devoted to extensive simula- 
tions of the considered systems and the development 
of extended theoretical models for partially connected 
networks. 
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