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ABSTRACT

For sequential output data analysis in non-terminating
discrete-event simulation, we consider three methods of
point and interval estimation of the steady-state variance.
We assess their performance in the analysis of the output
of queueing simulations by means of experimental cover-
age analysis. Over a range of models, estimating variances
turns out to involve considerably more observations than
estimating means. Thus, selecting estimators with good
performance characteristics is even more important.

INTRODUCTION

The output sequence {x} = x1, x2, . . . of a simulation pro-
gram is usually regarded as the realisation of a stochastic
process {X} = X1, X2, . . .. In the case of steady-state
simulation, we assume this process to be stationary and er-
godic.

Current analysis of output data from discrete event simu-
lation focuses almost exclusively on the estimation of mean
values. Thus, the literature on “variance estimation” mostly
deals with the estimation of the variance of the mean, which
is needed to construct a confidence interval of the estimated
mean values.

In this paper, we are interested in finding point and inter-
val estimates of the steady-state variance σ2 = Var[Xi] and
the variance of the variance, from which we can construct
confidence intervals for the variance estimates. Similar to
the estimation of mean values, one problem in variance es-
timation is caused by the fact that output data from steady-
state simulation are usually correlated.

The variance we estimate is not to be confused with the
quantity σ2

0 = limn→∞ nVar[X(n)], sometimes referred
to as variance parameter (Chen and Sargent, 1990) or
steady-state variance constant (Steiger and Wilson, 2001),

and which is important in the methods of standardized time
series (Schruben, 1983) and various methods using this
concept.

Applications for the estimators we propose can be found
in the performance analysis of communication networks.
In audio or video streaming applications, for example, the
actual packet delay is less important than the packet delay
variation or jitter (see e.g. Tanenbaum, 2003). Other appli-
cations include estimation of safety stock or buffer sizes,
and statistical process control.

Our estimation procedures are designed for sequential
estimation. As more observations are generated, the esti-
mates are continually updated, and simulation is stopped
upon reaching the required precision.

In simulation practice, one observes an initial transient
phase of the simulation output due to the initial conditions
of the simulation program, which are usually not repre-
sentative of its long-run behaviour. It is common practice
to let the simulation “warm up” before collecting observa-
tions for analysis. For many processes, σ2 converges to its
steady-state value slower than the process mean; therefore,
existing methods of detection of the initial transient period
with regard to the mean value may sometimes not be ap-
plicable for variance estimation. A method based on distri-
butions, which includes variance, is described in (Eickhoff
et al., 2007). This is, however, not the focus of this paper,
so we use a method described in (Pawlikowski, 1990).

In the next section we present three different methods
of estimating the steady-state variance. We assessed these
estimators experimentally in terms of the coverage of con-
fidence intervals. The results of the experiments are pre-
sented in Section 3. The final section of the paper sum-
marises our findings and gives an outlook on future re-
search.

ESTIMATING THE STEADY-STATE VARIANCE

In the case of independent and identically distributed ran-
dom variables, the well-known consistent estimate of the



variance is

σ̂2(n) = s2(n) =
1

n− 1

n∑
i=1

(xi − x̄(n))2, (1)

and its variance is known to be (see e.g. Wilks, 1962, p.
200)

Var[s2(n)] =
1
n

(
µ4 −

n− 3
n− 1

σ4

)
, (2)

where x̄(n) =
∑i
j=1 xj/i, is the sample mean of the first

n observations, and µ4 is the fourth central moment of the
steady-state distribution.

In the case of correlated observations usually encoun-
tered in simulation output data, s2 is no longer unbiased,
but in fact (see Anderson, 1971, p. 448)

E[s2(n)] = σ2

(
1− 2

∑n−1
j=1 (1− j/n)ρj

n− 1

)
, (3)

where ρj is the lag j autocorrelation coefficient of the se-
quence {x}.

We propose three estimators of σ2: Method 1 treats it
as a mean value and thus avoids dealing with the statistical
problems associated with the estimate s2, Method 2 uses
uncorrelated observations to overcome the bias problem of
s2, and Method 3 compensates for this bias.

Method 1: Variance as a Mean Value
Variance is defined as the mean squared deviation of a ran-
dom variable from its mean value: Var[X] = E[(X −
E[X])2]. This suggests that it should be possible to esti-
mate variance as a mean value. We estimate the variance of
a sequence {x} as the mean of the new sequence {y}, de-
fined by yi = (xi − x̄(i))2. This makes the point estimate

σ̂2
1(n) =

1
n

n∑
i=1

yi.

To obtain a confidence interval, any existing procedure of
mean value estimation can be used. We use the method of
spectral analysis, as proposed by (Heidelberger and Welch,
1981).

Method 2: Uncorrelated Observations
Processes typically encountered as simulation output data
have a monotonically decreasing autocorrelation function;
so, observations that are spaced “far apart” are less cor-
related, and if we choose a sufficiently large spacing, we
can assume that the observations are (almost) uncorrelated.
This enables us to use (1) as a point estimate of the vari-
ance.

We define a secondary sequence {y} as yi = xk0i, where
k0 is the spacing distance needed to make the observations
approximately uncorrelated. The ergodic property of the
process {X} ensures that Var[Xi] = Var[Yi] = σ2.

As point estimate we apply (1) to the sequence {y}:

σ̂2
2(n) =

1
m− 1

m∑
i=1

(yi − ȳ(i))2

where m = bn/k0c is the length of the sequence {y}. To
calculate the variance of the estimate, we use (2), replacing
the actual values of σ2 and µ4 with their estimates:

Var[σ̂2
2(n)] =

1
m

(
m∑
i=1

(yi − ȳ(m))4 − m− 3
m− 1

σ̂4
2(n)

)

The half-width of the confidence interval is then

∆2 = z1−α/2

√
Var[σ̂2

2 ].

We do not know of any general results on the distribu-
tion of S2(n); however, we can use a normal distribution
because we assume the yi to be uncorrelated, and their sam-
ple size to be large.

To find an appropriate value for the spacing k0, we suc-
cessively test values by extracting the respective subse-
quences, and analysing their autocorrelation.

Method 3: Batch Means
We have seen in (3) that the sample variance of a finite,
correlated sample is a biased estimate of σ2. When con-
sidering batches of observations of size m, we know that
their means have a variance of (see Law and Kelton, 1991,
p. 285)

Var[x̄(m)] =
σ2

m

1 + 2
m−1∑
j=1

(1− j/m)ρj

 .

Based on an unpublished paper by (Feldman et al., 1996),
we show that adding s2(m) and Var[x̄(m)] yields a consis-
tent estimate of σ2. One can think of this as splitting the
variance into two components, a local variance describing
the short term variations of the process, and a global vari-
ance representing the long term variations. The local vari-
ance is calculated as the mean variance inside equal-sized
batches, and the global variance is the variance of the means
of the same batches.

To this end, we define a number of statistics: Given
b equal-sized batches of size m, we calculate the sample
mean and sample variance of each batch j, containing the
observations xj,1, xj,2, . . . , xj,m as

x̄j =
1
n

n∑
k=1

xj,k

s2j =
1
n

n∑
k=1

(xj,k − x̄j)2.



Furthermore, we calculate

¯̄x =
1
b

b∑
j=1

x̄j

s2X =
1

b− 1

b∑
j=1

(x̄j − ¯̄x)2

v̄ =
1
b

b∑
j=1

s2j .

¯̄x and s2X are the sample mean and sample variance of the
batch means, and v̄ is the sample mean of the batch vari-
ances.

We now define the point estimator as

σ̂2
3 = v̄ + s2X .

We know that v̄ is an unbiased estimator of E[S2
j ] =

E[m−1
m S2(m)], and that s2X is an unbiased estimator of

Var[X] . So we can see that

E[σ̂2
3 ] = E[v̄] + E[s2X ]

= E[
m− 1
m

S2(m)] + Var[X]

= σ2,

To obtain a confidence interval, we consider the statistic

yj = s2j +
b

b− 1
(x̄j − ¯̄x)2 ,

whose sample mean is equal to the point estimate σ̂2
3 . Be-

cause we can express the variance estimate as the sample
mean of a random sample, we can justify calculating the
confidence interval using the sample variance of this sam-
ple:

s2Y =
1

b− 1

b∑
j=1

(
yj − σ̂2

)2
.

The half-width of the confidence interval is then

∆3 = tb−1,1−α/2

√
s2Y /b.

Finding an appropriate batch sizem is crucial in this esti-
mator. If the batches are too small, the yj will be correlated,
and their sample variance s2Y does not accurately describe
the variance of the estimate σ̂2

3 .
To determine the batch size we use a simple procedure

which tests the first autocorrelation coefficients of the se-
quence of batch means, continually increasing the batch
size until the correlation becomes negligible.

EXPERIMENTAL COVERAGE ANALYSIS
To assess the performance of the proposed estimators, we
use the method of sequential coverage analysis, as de-
scribed in (Pawlikowski et al., 1998). The estimators were

implemented using the Akaroa2 framework (Ewing et al.,
1999).

We analyse the steady-state variance of the waiting times
of customers in the single server queueing models M/M/1,
M/E2/1, and M/H2/1. The model parameters are selected
such that the coefficient of variation of the service time
is 1 for the M/M/1 model,

√
0.5 for M/E2/1, and

√
5 for

M/H2/1.
Simulations are run sequentially and stopped upon reach-

ing a relative precision of 0.05 at the 0.95 confidence level.
The coverage of confidence intervals is then calculated
from the frequency with which the generated confidence
interval covers the actual (theoretical) variance, and a con-
fidence interval for the coverage is calculated at the 0.95
confidence level. Our procedure to analyse coverage fol-
lows the rules proposed in (Pawlikowski et al., 1998):

1. Coverage analysis is done sequentially.

2. Our results include a minumum number of 200 “bad”
confidence intervals.

3. Simulation runs shorter than the mean run length mi-
nus one standard deviation are discarded.

Each of the estimators is used on the three models at dif-
ferent system loads, ranging from 0.1 to 0.9. To deal with
bias due to the initial transient period of the simulation we
use the method described in (Pawlikowski, 1990), which is
a combination of a heuristic and a statistical test for station-
arity of the output sequence.

The Estimator σ̂2
1 (Figure 1) shows a coverage of around

0.93, which is slightly lower than the required 0.95, but still
acceptable for most practical purposes. Because of its easy
implementation (using an existing method of mean value
estimation), this estimator can be interesting for practical
use.

The estimator σ̂2
2 has generally good coverage (Figure

2), which shows that the method of “far apart” uncorrelated
observations works.

Of the three estimators proposed, σ̂2
3 has the best cover-

age of confidence intervals (Figure 3).
In addition to the coverage of confidence intervals, we

examine the convergence of the estimators on the basis of
the number of observations needed to reach the required
precision. Table 1 shows the mean number of observations
collected before reaching that precision. Overall, Method
3 needs the fewest observation before the stopping crite-
rion is satisfied, Method 2 needs the most. With increasing
system load the simulation run lengths of all three estima-
tors show a similar behaviour. It is worth noting that the
run lengths in Table 1 are roughly an order of magnitude
greater than those that would be required for estimating the
mean waiting times to the same precision.

For the estimator σ̂2
2 , we analyse the value of the param-

eter k0, which is automatically determined during the esti-
mation process. Table 2 shows the average spacing used to
produce almost independent observations. We see that the
models with a higher coefficient of variation of the service
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Figure 1: Coverage of Estimator σ̂2
1
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Figure 2: Coverage of Estimator σ̂2
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Figure 3: Coverage of Estimator σ̂2
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M/M/1 Queue M/E2/1 Queue M/H2/1 Queue
ρ σ̂2

1 σ̂2
2 σ̂2

3 σ̂2
1 σ̂2

2 σ̂2
3 σ̂2

1 σ̂2
2 σ̂2

3

0.1 160 570 155 117 407 112 577 1736 552
0.2 131 365 123 94 265 89 556 1302 517
0.3 140 339 131 101 248 95 624 1291 567
0.4 172 372 158 125 275 118 752 1437 672
0.5 234 461 214 172 346 160 973 1744 862
0.6 359 652 325 266 494 245 1383 2342 1222
0.7 636 1078 571 481 826 435 2317 3646 2010
0.8 1491 2331 1322 1134 1776 996 5019 7282 4317
0.9 6237 9096 5509 5079 6942 4146 22044 26930 16750

Table 1: Mean Number of Observations Needed to Reach Required Precision (in 1000 Observations)

ρ M/M/1 M/E2/1 M/H2/1

0.1 6.6 6.2 10.7
0.2 8.6 7.8 17.4
0.3 11.9 10.4 27.4
0.4 17.4 14.6 43.3
0.5 26.4 21.7 70.2
0.6 43.5 35.1 119.8
0.7 80.5 64.0 228.3
0.8 188.2 146.5 535.8
0.9 769.4 589.5 2213.5

Table 2: Mean Value of k0 in Estimator σ̂2
2

time need larger values of k0 due to the higher correlation
of the output sequence.

CONCLUSIONS AND FUTURE WORK
In this paper, we introduced three different approaches for
estimating the steady-state variance in discrete event simu-
lation. We applied the estimators to single-server queueing
models and compared them in terms of coverage and sam-
ple size needed to obtain confidence intervals of a certain
precision.

So far, the proposed estimators have only been tested on
single-server queues. Although we expect them to be ap-
plicable to a much broader range of models, further study
is required to confirm this.

Methods 1 and 3 estimate the variance as the mean of a
secondary sequence of observations. This suggests that the
method of Multiple Replications in Parallel, as proposed in
(Pawlikowski et al., 1994), can be used to speed up vari-
ance estimation by utilising multiple computers in parallel.
While this is indeed confirmed by preliminary experiments
reported in (Schmidt, 2008), further study is needed.

Method 2 has the obvious weakness of only using a frac-
tion of the generated observations. Investigation is needed
to determine if the method can be improved so that it does
not discard as many observations.

Method 3 required the smallest number of observations
and produced estimates with good coverage properties.

The sample sizes required for a certain precision turned
out to be substantially larger than those needed to estimate
comparable means, so selecting the best estimator is an im-
portant problem.

The problem of the initial transient period has not been
addressed with regard to the steady-state variance. The
method used in this paper (Pawlikowski, 1990) was de-
signed for the estimation of mean values. Analysis of the
warm-up period in estimation of steady-state variance is a
subject of our future studies.
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