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Abstract—This paper provides a systematic mutual informa-
tion (MI) and multichannel beamforming (MBF) characterization
of optimized multiple-input multiple-output (MIMO) commu-
nication systems operating in Ricean fading. These optimized
configurations are of high practical importance since, contrary
to the common belief, benefit from the presence of direct Line-
of-Sight (LoS) components and deliver maximum multiplexing
gains, by deploying specifically designed antenna arrays at both
ends. In the following, using elements from random matrix
theory, novel analytical expressions are derived for the exact
and asymptotic MI statistics while the prevalent Gaussian ap-
proximation is examined. Moreover, new explicit expressions for
the marginal eigenvalues are deduced which are thereafter used
to analyze the BF performance of the associated eigenmodes in
terms of Signal-to-Noise ratio (SNR) outage probability. We note
that all derived formulas are given in tractable determinant form
and therefore allow for fast and efficient computation and also
yield an excellent match with Monte-Carlo simulations, under
different fading scenarios and model parameters.

Index Terms—Mutual information, MIMO systems, Ricean
fading, Wishart matrices, eigenvalue distributions.

I. INTRODUCTION

THE rapid development of multiple-input multiple-output
(MIMO) systems over the past decade, has been mainly

based on the grounds of Rayleigh fading (either independent
and identically distributed (i.i.d.) or correlated), where no
Line-of-Sight (LoS) path is present and a high number of
multipath components is created by the surrounding environ-
ment [1]–[5]. Although the assumption of Rayleigh fading
simplifies extensively the performance analysis of MIMO
systems, its validity is often violated due to either a specular
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wavefront or a strong direct component; then, the entries of the
channel matrix can be more effectively modeled via the Ricean
distribution. Conceptually, LoS propagation is viewed to limit
MIMO advantages because the channel matrix is normally
rank deficient due to the linear dependence of the LoS rays’
phases [6]–[8]. This makes the differentiation of the received
signals at the MIMO detector laborious, thereby causing a
high percentage of erroneously detected transmitted signals.

Some recent investigations though have questioned this
belief and proposed design methodologies in order to achieve
subchannel orthogonality which is a key condition for capacity
maximization [9]–[13]. The common idea behind all these
approaches is to place the antenna elements sufficiently far
apart so that the spatial LoS responses become unique with
a phase difference of 𝜋/2. The optimum spacings can be
easily worked out via simple geometrical tools, while the
mean channel matrix becomes full-rank and delivers equal LoS
eigenvalues. Henceforth, we will refer to these configurations
as optimized LoS MIMO systems. The fundamental feature of
these configurations is that they yield maximal capacity at
any given Ricean 𝐾-factor, under uniform power allocation
(UPA) [9], [10], [12], [13]. As such, their mean MI (ergodic
capacity) can be used to evaluate the difference between the
theoretical capacity and the rate achieved in practice.

In the context of MIMO Ricean channels, we first note the
work in [6] in which exact expressions for the mutual infor-
mation (MI) statistics were derived; yet, the final results were
given in integral form containing hypergeometric functions
and therefore can be evaluated only numerically. In [14], the
exact ergodic capacity was investigated when the transmitter
(Tx) has full channel state information (CSI) while in [7]
the authors derive asymptotic expressions for the mean MI
when the Signal-to-Noise ratio (SNR) goes to infinity and
the average channel matrix is rank-1. In [15], the MI higher-
order statistics were derived in integral form using the joint
(un)-ordered eigenvalue distributions. A plethora of recent
works focused on MIMO capacity bounds for the case of
Ricean fading. The most general approach so far has been
reported in [16] which deduced several upper/lower capacity
bounds assuming all different types of spatial correlation. We
also recall the alternative approaches of [8], [17]–[19] which
provide useful insights into this interesting area. In [20], some
simplified expressions for the elementary functions of Wishart
matrices were given which were thereafter used to upper and
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lower bound the MI complementary cumulative distribution
function (CDF). Finally, the seminal work of [21] considered
the asymptotic MI statistics of doubly-correlated LoS MIMO
systems using the replica method. The common characteristic
of the above mentioned papers is that they consider either the
tractable case of rank-1 systems [6]–[8], [15], [17], [18] or
the case of distinct LoS eigenvalues [15]–[17].

Apart from capacity statistics, a critical issue is the de-
sign of optimal linear transceivers (linear precoder/equalizer)
for enhancing the performance of multichannel beamforming
(MBF) MIMO systems, and consequently, minimize the error
rates. When perfect CSI is available at both the Tx and
receiver (Rx), the optimum strategy is to convey data streams
across the channel eigenmodes, or the orthogonal spatial
subchannels that are established in a typical MIMO link.
A comprehensive theoretical framework for this choice was
given in [22], and since then has been widely used in the
corresponding literature [23]–[25]. In order to analytically
characterize these systems in terms of outage probability, we
have to obtain explicit expressions for the marginal eigenvalue
distributions. In this context, a generic analytic framework for
the marginal eigenvalue distributions of different classes of
Wishart matrices (both central and noncentral), can be found
in [26]–[28]. For the specific case of Ricean fading, a similar
analysis was performed in [25] for arbitrary rank of the mean
channel matrix but with distinct eigenvalues.

To the best of the authors’ knowledge, little is still known
for the capacity statistics and MBF performance of optimized
LoS MIMO configurations. This can be partially attributed
to the difficulty in manipulating complex non-central Wishart
matrices in this limiting case. While the authors in [9]–
[12] propose tractable design methodologies for maximizing
LoS MIMO capacity, no statistical characterization is being
performed. Only recently, the MI probability density function
(PDF) was deduced but this analysis was tied to dual config-
urations where the minimum number of antennas is two [29].

The main paper contributions can now be summarized as:
∙ We first extend the results of [6] to account for the case of

orthogonal LoS subchannels with identical eigenvalues.
In order to tackle the determinant limits of type 0/0
that appear throughout, we invoke a useful technique
proposed recently in [30] that lends itself into tractable
manipulations. Novel explicit expressions, that are analyt-
ically friendlier and more insightful than the ones of [6],
are presented for the exact MI mean and variance of op-
timized LoS MIMO systems, via its moment generating
function (MGF); these expressions apply for an arbitrary
number of antenna elements. In the high-SNR regime,
we provide tractable formulas for the MI statistics, via
the generalized variance of the MIMO correlation matrix,
that reveal interesting implications of the model parame-
ters on MIMO capacity. We also explore the Gaussianity
approximation for the MI distribution with our numerical
results indicating that it is valid under different fading
scenarios.

∙ In the second part, we capitalize on the works of [23]–
[25] to provide a thorough MBF performance analysis.
New explicit formulas for the ordered marginal/unordered
CDF/PDF eigenvalue distributions are derived, in order

to assess the SNR statistics of the associated eigen-
modes. Moreover, first-order expansions for the marginal
eigenvalue distributions are given, and applied to the
asymptotic outage characterization.

The rest of the paper is organized as: In Section II, the
MIMO channel model is introduced along with the limiting
joint eigenvalue PDF. In Section III, we deduce analytical
expressions for the exact/asymptotic MI statistics and intro-
duce the Gaussianity approximation. The MBF performance
is assessed in Section IV. A set of numerical results is given
in Section V. Finally, Section VI concludes the paper.

Notation: We use upper and lower case boldface to denote
matrices and vectors, respectively. The (𝑖, 𝑗)-th entry of an
𝑚 × 𝑛 matrix X is {X}𝑖,𝑗 with 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛.
An 𝑛 × 𝑛 identity matrix is expressed as I𝑛. The symbols
(∙)𝑇 , (∙)† represent the transpose and Hermitian transpose
respectively, tr(∙) yields the matrix trace, etr(∙) is a shorthand
notation for exp(tr(∙)), while det(∙) and ∣∙∣ will interchange-
ably denote the matrix determinant.

II. MIMO CHANNEL MODEL AND JOINT EIGENVALUE

PDF

We consider a MIMO system with 𝑁𝑡 transmit and 𝑁𝑟

receive antennas and also define 𝑠 ≜ min(𝑁𝑡, 𝑁𝑟) and 𝑡 ≜
max(𝑁𝑡, 𝑁𝑟). In the case of flat Ricean fading, the channel
matrix H ∈ ℂ

𝑁𝑟×𝑁𝑡 is modeled as [31]

H =

√
𝐾

𝐾 + 1
HL +

√
1

𝐾 + 1
H𝑤 (1)

where 𝐾 is the Ricean 𝐾-factor expressing the ratio of powers
of the free-space signal and the scattered waves. The random
component, H𝑤, accounts for the scattered signals with its
entries being modeled as i.i.d. ∼ 𝒞𝒩 (0, 1) random variables
(Rayleigh fading), while HL represents the deterministic non-
fading component. We also define the physically measured
SNR at each receiving antenna as 𝛾 while the channel power is
normalized so that E

[
tr
(
HH†)] = 𝑁𝑟𝑁𝑡. As was previously

mentioned, we are particularly interested in optimized full-
rank LoS configurations which can be realized by deploying
specifically designed antenna arrays at both ends [9]–[13].
For the case of parallel uniform linear arrays (ULAs),1 the
optimum inter-element spacings at the Tx (𝑑𝑡) and Rx (𝑑𝑟)
for a given Tx-Rx distance 𝐷 and carrier wavelength 𝜆, have
to satisfy the following criterion [11, Eq. (28)]

𝑑𝑡𝑑𝑟 ≈ 𝜆𝐷

(
1

𝑡
+ 𝑝

)
, 𝑝 ∈ {0, 1, 2, ...}. (2)

Although the above criterion is a function of terminal dis-
tance𝐷, which may be unknown or constantly changing, it has
been demonstrated in [11] that the sensitivity of the proposed
configurations to displacements from the optimum is rather
low. Hence, they can still achieve near-optimum performance
over a large coverage area, which makes them likely to be
employed in diverse modern applications, like suburban/indoor
WLANs [32] or 60 GHz communications [33], to deliver
ultra-broadband data rates. Another emerging applications are

1The case of tilted arrays admits a similar solution [11] but its study is
beyond the scope of the paper.
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typical point-to-point microwave links (i.e. between 6 and 38
GHz) and MIMO vehicular networks [34], where a moving
vehicle communicates with either another vehicle or with the
roadside in support of demanding applications spanning high-
speed networking and video streaming to mobile commerce
and Web surfing (see IEEE 802.11p standard).

A. Non-Central Wishart Matrices and Joint Eigenvalue PDF

From (1), we have that 𝐸 {H} = M =
√
𝐾/(𝐾 + 1)HL,

while the column-correlation matrix of the random component
is Σ = 𝜀2I𝑠, with 𝜀 = 1/

√
𝐾 + 1. The instantaneous MIMO

correlation matrix, W, of the composite channel matrix is
defined as

W ≜
{

HH†, if 𝑁𝑟 ≤ 𝑁𝑡

H†H, if 𝑁𝑟 > 𝑁𝑡.
(3)

In this case, W ∈ ℂ
𝑠×𝑠 follows an uncorrelated non-

central Wishart distribution with 𝑡 degrees of freedom, i.e.
W ∼ 𝒞𝒲𝑠

(
𝑡, 𝜀2I𝑠,Ω

)
[35], [36], where

Ω ≜
{

Σ−1MM†, if 𝑁𝑟 ≤ 𝑁𝑡

Σ−1M†M, if 𝑁𝑟 > 𝑁𝑡
(4)

is the so-called non-centrality matrix. Hereafter, we consider
a scaled version of W, that is

S = Σ−1W ∼ 𝒞𝒲𝑠 (𝑡, I𝑠,Ω) . (5)

We denote its eigenvalues via 𝝀 ≜ [𝜆1, 𝜆2, . . . , 𝜆𝑠]
𝑇 ,

with 𝜆1 ≥ 𝜆2 . . . ≥ 𝜆𝑠 > 0. Likewise, we can define
the eigenvalues of the non-centrality matrix, Ω, which are
concatenated into the vector 𝝎 ≜ [𝜔1, 𝜔2, . . . , 𝜔𝑠]

𝑇 . For
the case of optimized LoS MIMO systems, the correlation
between the LoS responses is eliminated, thereby resulting
in orthogonal spatial LoS subchannels [9]–[13]. As such, the
non-centrality matrix becomes diagonal and assuming that the
relative differences in path loss are negligible, we end up with
Ω = 𝑡I𝑠, while its eigenvalues are 𝜔1 = . . . = 𝜔𝑠 = 𝜔 = 𝑡𝐾 .
The joint ordered eigenvalue PDF of S in this limiting case
is now given by the following theorem:

Theorem 1: The joint eigenvalue PDF of the uncorrelated
non-central Wishart matrix S in (5) is

𝑓(𝝀) = 𝑐1∣Ψ𝑐(𝝀)∣∣Φ(𝝀)∣
𝑠∏
ℓ=1

𝜆𝑡−𝑠ℓ 𝑒−𝜆ℓ (6)

where 𝑐1 = etr(−𝝎)/Γ𝑠(𝑠) = 𝑒−𝑠𝑡𝐾/Γ𝑠(𝑠), Γ𝑚(𝑛) =∏𝑚
𝑖=1(𝑛− 𝑖)! and

{Φ(𝝀)}𝑖,𝑗=𝜆𝑠−𝑖𝑗 , {Ψ𝑐(𝝀)}𝑖,𝑗=
𝜆𝑠−𝑗𝑖

(𝑡− 𝑗)!
0𝐹1(𝑡+ 1− 𝑗;𝜆𝑖𝜔)

(7)

while 𝑝𝐹𝑞(⋅) is the generalized hypergeometric function with
𝑝, 𝑞 non-negative integers [37, Eq. (9.14.1)].

Proof: A detailed proof is given in Appendix A.

III. MI MGF AND STATISTICS

In this section, we explore the MIMO MI and provide exact
and asymptotic high-SNR expressions for its first and second-
order statistics. For the case of optimized LoS configurations

with equal LoS eigenvalues, isotropic input has been shown
to be capacity achieving even when the Tx knows the channel
statistics [38, Proposition 1]. Based on this key observation
and denoting the normalized SNR per transmitting antenna as
𝛾𝑐 = 𝛾𝜀2/𝑁𝑡, the MI reads as [1]

𝐼(H) = log2 det

(
I𝑁𝑟 +

𝛾

𝑁𝑡
HH†

)
=

𝑠∑
ℓ=1

log2 (1 + 𝛾𝑐𝜆ℓ) .

(8)

A. Exact MI Statistics

Assuming that the channel is ergodic, we can define the MI
MGF according to (with ℝ(𝜈) < 0)

𝐺(𝜈) = E [exp(𝜈𝐼(H))] = E

[
𝑠∏
ℓ=1

(1 + 𝛾𝑐𝜆ℓ)
𝜈

ln 2

]
(9)

while the expectation is across all channel realizations of H.
Theorem 2: The MI MGF of the uncorrelated non-central

Wishart matrix S in (5) is given by

𝐺(𝜈) = 𝑐1 det (Λ(𝜈)) (10)

where the entries of the 𝑠× 𝑠 matrix Λ(𝜈) are given by

{Λ(𝜈)}𝑖,𝑗 =
∞∑
𝑘=0

𝛼(𝑘)!𝜔𝑘𝛾
−(𝛼(𝑘)+1)
𝑐

𝑘!(𝑡+ 𝑘 − 𝑗)!

× 𝑈

(
𝛼(𝑘) + 1, 𝛼(𝑘) + 2 +

𝜈

ln 2
,
1

𝛾𝑐

)
(11)

with 𝛼(𝑛) = 𝑡 + 𝑠 + 𝑛 − 𝑖 − 𝑗, Γ(𝑥) is the well-known
Gamma function and 𝑈(𝑎, 𝑏, 𝑧) is the Tricomi hypergeometric
function [39, Eq. (13.1.3)].

Proof: The proof starts by invoking the integral definition
of the MI MGF, that is

𝐺(𝜈) =

∫
𝐷0

𝑠∏
ℓ=1

(1 + 𝛾𝑐𝜆ℓ)
𝜈

ln 2 𝑓(𝝀)𝑑𝜆1 . . . 𝑑𝜆𝑠 (12)

where 𝒟0 = {0 < 𝜆𝑠 < . . . < 𝜆1 <∞}. Substituting (6) into
(12), and using the generic approach of [2, Corollary 2] to
simplify the multiple integral into a scalar integral, we can
reach the final result using [37, Eq. (9.211.4)] and after some
basic algebraic manipulations.

Theorem 3: The mean MI of the uncorrelated non-central
Wishart matrix S in (5) reads

𝐶 = E [𝐼(H)] =
𝑐1𝑒

1/𝛾𝑐

ln 2

𝑠∑
ℓ=1

det (Λ𝑐(ℓ)) (13)

where the entries of the 𝑠× 𝑠 matrix Λc(ℓ) are

{Λc(ℓ)}𝑖,𝑗 =

⎧⎨
⎩

∞∑
𝑘=0

𝛼(𝑘)!𝜔𝑘Δ1(𝛼(𝑘) + 1, 𝜌𝑐)

𝑘!(𝑡+ 𝑘 − 𝑗)!
, 𝑗 = ℓ

(𝑡+ 𝑠− 𝑖− 𝑗)!/(𝑡− 𝑗)!
×1𝐹1(𝑡+ 𝑠− 𝑖− 𝑗 + 1; 𝑡− 𝑗 + 1;𝜔), 𝑗 ∕= ℓ

(14)

where

Δ1(𝑚,𝛽) =

𝑚∑
𝑖=1

Γ(−𝑚+ 𝑖, 1/𝛽)

𝛽𝑚−𝑖 =

𝑚−1∑
𝑖=0

𝔼𝑖+1(1/𝛽) (15)
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with Γ(𝑝, 𝑥) =
∫∞
𝑥
𝑡𝑝−1𝑒−𝑡𝑑𝑡 being the upper incom-

plete gamma function [37, Eq. (8.350.2)] while 𝔼𝑛(𝑧) =∫∞
1 𝑡−𝑛𝑒−𝑧𝑡𝑑𝑡, 𝑛 = 0, 1, 2, . . . ,ℝ(𝑧) > 0 is the exponential

integral function [39, Eq. (5.1.4)].
Proof: The proof is based on the definition of the 𝑛-th

order moment of MI, or

E [𝐼(H)𝑛] =
𝑑𝑛(𝐺(𝜈))

𝑑𝜈𝑛

∣∣∣∣
𝜈=0

. (16)

Setting 𝑛 = 1 in (16), and using the product rule for
the derivative of a determinant in (11), we can obtain the
desired result after introducing the Lebesque’s Dominated
Convergence Theorem [40, Sec. 5.9] to interchange the order
of integration and differentiation, and with the aid of [6, Eq.
(40)].

For the convergence of the infinite series in (14), we will
now assume that 𝑇0 − 1 terms are used so that the truncation
error ℛ0 can be written as

ℛ0 =

∞∑
𝑘=𝑇0

𝛼(𝑘)!𝜔𝑘Δ1(𝛼(𝑘) + 1, 𝛾𝑐)

𝑘!(𝑡+ 𝑘 − 𝑗)!

<
∞∑

𝑘=𝑇0

𝛼(𝑘)!𝜔𝑘(𝛼(𝑘) + 1)𝔼1(1/𝛾𝑐)

𝑘!(𝑡+ 𝑘 − 𝑗)!

<
𝔼1(1/𝛾𝑐)𝜔

𝑇0(𝑡+ 𝑠+ 𝑇0 − 𝑖− 𝑗 + 1)!

𝑇0!(𝑡+ 𝑇0 − 𝑗)!

× 2𝐹2(𝑡+ 𝑠+ 𝑇0 − 𝑖− 𝑗 + 2, 1;𝑇0 + 1, 𝑡+ 𝑇0 − 𝑗 + 1;𝜔)

where we have used the fact that 𝔼𝑛(1/𝛽) is a monotonically
decreasing function in 𝑛.

The following theorem returns the second MI moment,
through which we can obtain the MI variance:

Var(𝐼(H)) = E
[
𝐼(H)2

]− (E [𝐼(H)])
2
. (17)

Theorem 4: The second MI moment of the uncorrelated
non-central Wishart matrix S in (5) reads

𝐸
[
𝐼(H)2

]
=

𝑐1
(ln 2)2

𝑠∑
ℓ=1

𝑠∑
𝑛=1

det (Λv(ℓ, 𝑛)) (18)

where the entries of the 𝑠 × 𝑠 matrix Λv(ℓ, 𝑛) are given in
(19) at the top of next page, with [6, Eq. (41)]

Δ2(𝑚, 𝑏) =

∫ ∞

0

𝑦𝑚−1 ln2(1 + 𝑏𝑦)𝑒−𝑦𝑑𝑦 =
2𝑒

1
𝑏

𝑏𝑚

×
𝑚−1∑
𝑝=0

(−1)𝑝
(
𝑚− 1

𝑝

)
𝐺4,0

3,4

[
1

𝑏

∣∣∣𝑝−(𝑚−1),𝑝−(𝑚−1),𝑝−(𝑚−1)

0,𝑝−𝑚,𝑝−𝑚,𝑝−𝑚

]
(20)

where 𝐺𝑚,𝑛𝑝,𝑞
[
𝑥,
∣∣∣𝛼1,...,𝛼𝑝

𝛽1,...,𝛽𝑞

]
is the Meijer’s 𝐺-function [37, Eq.

(9.301)].
Proof: The proof follows a similar line of reasoning as

in Theorem 3, by simply setting 𝑛 = 2 in (16) and using
the well-known properties for the second-order derivatives of
determinants.

For the convergence of (19)–(20), we first note that the inte-
grand in (20) is dominated by the exponential term as 𝑦 → ∞.
Hence, we can split the integral into two integrals over [0, 𝐴]
and (𝐴,∞) with 𝐴 > 0 such that the latter term becomes

infinitely small. The first integral can be further split and
upper bounded using the monotonicity wrt 𝑦 and 𝛼(𝑘) of the
individual terms in the integrand of (20). After some algebra,
it can be shown that ∃𝑐 > 0,Δ2(𝛼(𝑘)+1, 𝛾𝑐) < 𝑐𝐴𝛼(𝑘) which
concludes the proof for the series convergence. Note that the
integral in (20) admits an alternative closed-form solution via
a mixture of hypergeometric/exponential integral functions as
given in [41, Eq. (20)].

B. Asymptotic High-SNR MI Statistics

We can now investigate the MI statistics in the high-SNR
regime. A straightforward option is to take 𝛾 infinitely large in
(13)–(15) and (18)–(20), as was done in a conference version
of this paper [13]. We herein, however, adopt an alternative
approach in order to obtain more insightful results regarding
the parameters that affect the MI statistics. Note that our
analysis uses similar arguments to [16]. On this basis, the key
point of our analysis is the following lemma which returns the
𝜐-th moment of the generalized variance of W:

Lemma 1: The 𝜐-th moment of the generalized variance of
W ∼ 𝒞𝒲𝑠

(
𝑡, 𝜀2I𝑠,Ω

)
is given by

𝜙(𝜐) = E [∣W∣𝜐] = 𝜀2𝑠𝜐
𝑐1Γ𝑠(𝑡+ 𝜐)

Γ𝑠(𝑡)
∣A(𝜐)∣ (21)

where A(𝜐) is a 𝑠× 𝑠 real matrix with entries

{A(𝜐)}𝑖,𝑗=

⎧⎨
⎩

2𝐹2(𝑡+ 𝜐 − 𝑠+ 𝑖, 𝑖; 𝑡− 𝑠+ 𝑖, 𝑖− 𝑗 + 1;𝜔)

×𝜔𝑖−𝑗(𝑖−1)!
(𝑖−𝑗)! , 𝑖 ≥ 𝑗

2𝐹2(𝑡+ 𝜐 − 𝑠+ 𝑗, 𝑗; 𝑡− 𝑠+ 𝑗, 𝑗 − 𝑖+ 1;𝜔)

× (𝑡−𝑠+𝑖−1)!(𝑡+𝜐−𝑠+𝑗−1)!(𝑗−1)!
(𝑡−𝑠+𝑗−1)!(𝑡+𝜐−𝑠+𝑖−1)!(𝑗−𝑖)! 𝑖 < 𝑗.

(22)

Proof: A detailed proof is given in Appendix B-A.
Theorem 5: As 𝛾 → ∞, the mean MI in (8) tends to

E [𝐼∞(H)] = 𝑠 log2

(
𝛾

𝑁𝑡

)
+

1

ln 2

𝑠−1∑
𝑘=0

𝜓(𝑡− 𝑘)

+ 𝑠 log2(𝜀
2) +

1

ln 2

∑𝑠
ℓ=1 ∣B(ℓ)∣
∣A(0)∣ (23)

where 𝜓(𝑥) is the digamma function [37, Eq. (8.360.1)] and
B(ℓ) ∈ ℝ𝑠×𝑠 is defined as

{B(ℓ)}𝑖,𝑗=

⎧⎨
⎩

{A(0)}𝑖,𝑗 , 𝑗 ∕= ℓ∑∞
𝑘=1

(𝑘+𝑖−1)!
(𝑘+𝑖−𝑗)!

𝜔𝑘+𝑖−𝑗

𝑘!

(∑𝑘−1
𝑛=0

1
𝑡−𝑠+𝑖+𝑛

)
,

𝑗 = ℓ, 𝑖 ≥ 𝑗∑∞
𝑘=0

(𝑘+𝑗−1)!
(𝑘+𝑗−𝑖)!

𝜔𝑘

𝑘!

(∑𝑘+𝑗−𝑖−1
𝑛=0

1
𝑡−𝑠+𝑖+𝑛

)
,

𝑗 = ℓ, 𝑖 < 𝑗.

(24)

Proof: A detailed proof is given in Appendix B-B.
The above theorem validates a classical result for MIMO

systems, which states that at high SNRs the mean MI increases
linearly with the minimum number of transmit/receive anten-
nas [1], [3]–[5]. In addition, we can see that at high SNRs the
effects of Rayleigh/Ricean fading are decoupled.
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{Λv(ℓ, 𝑛)}𝑖,𝑗 =

⎧⎨
⎩

∞∑
𝑘=0

𝜔𝑘Δ2(𝛼(𝑘) + 1, 𝛾𝑐)

𝑘!(𝑡+ 𝑘 − 𝑗)!
, 𝑗 = ℓ = 𝑛

∞∑
𝑘=0

𝛼(𝑘)!𝜔𝑘Δ1(𝛼(𝑘) + 1, 𝛾𝑐)

𝑘!(𝑡+ 𝑘 − 𝑗)!
, 𝑗 = ℓ or 𝑗 = 𝑛, ℓ ∕= 𝑛

(𝑡+ 𝑠− 𝑖− 𝑗)!1𝐹1(𝑡+ 𝑠− 𝑖− 𝑗 + 1; 𝑡− 𝑗 + 1;𝜔)/(𝑡− 𝑗)!, 𝑗 ∕= ℓ, 𝑗 ∕= 𝑛

(19)

Theorem 6: As 𝛾 → ∞, the MI variance in (8) tends to

Var [𝐼∞(H)] =
1

(ln 2)2

(
𝑠−1∑
𝑘=0

𝜓′(𝑡− 𝑘)−
(∑𝑠

ℓ=1 ∣B(ℓ)∣
∣A(0)∣

)2

+

∑𝑠
ℓ=1

∑𝑠
𝑝=1,𝑝∕=ℓ ∣C(ℓ, 𝑝)∣
∣A(0)∣ +

∑𝑠
ℓ=1 ∣D(ℓ)∣
∣A(0)∣

)
(25)

where C(ℓ, 𝑝),D(ℓ) are real 𝑠×𝑠matrices with entries defined
in (26)–(27) at the top of next page

Proof: A detailed proof is given in Appendix B-C.
Clearly, the asymptotic MI variance is independent of the

SNR. This demonstrates explicitly that the variance of the
MIMO MI converges to a deterministic constant as the SNR
grows infinitely large, which is consistent with the results
of [3], [16]. For Rayleigh fading (𝐾 = 0,Ω = 0), the
asymptotic MI statistics (23) and (25) simplify to

E [𝐼∞(H)] = 𝑠 log2

(
𝛾

𝑁𝑡

)
+

1

ln 2

𝑠−1∑
𝑘=0

𝜓(𝑡− 𝑘) (28)

Var [𝐼∞(H)] =
1

(ln 2)2

𝑠−1∑
𝑘=0

𝜓′(𝑡− 𝑘) (29)

which are respectively in agreement with [3, Eq. (9)], [5, Eq.
(12)] and [5, Eq. (31)], [16, Eq. (105)].

C. Outage Capacity-Gaussian Approximation

The Gaussian approximation for the MI distribution was
originally proposed in [42] for the case of i.i.d. Rayleigh
channels and thereafter adopted for various types of correlated
Rayleigh/Ricean MIMO channels [6], [16], [21]. The key
implication of this approximation, is that the outage capacity,
𝐼out(𝛼), can be directly obtained via the MI mean and variance
as derived in Theorems 3 and 4. Hence, we can write

𝐼out(𝛼) = E [𝐼(H)] +
√
Var [𝐼(H)]𝑄−1(𝛼) (30)

with 𝑄−1(⋅) being the inverse Gaussian 𝑄-function while
𝛼 represents the outage probability, or the largest informa-
tion rate of reliable communications that is guaranteed at
100(1 − 𝛼)% of the cases. In our numerical results, we
demonstrate that the Gaussian approximation works quite
well for optimized LoS MIMO configurations under different
channel parameters.

IV. PERFORMANCE ANALYSIS OF OPTIMUM LINEAR

TRANSCEIVERS FOR MBF MIMO SYSTEMS

We now elaborate on the performance of the optimum
eigenfilters in a typical MBF MIMO system with perfect CSI
at both ends. For this reason, we will use the common system

model of [22] (adopted also in [23]–[25]), without giving
explicit details due to space constraints. The main idea is
that when a precoder matrix B ∈ ℂ

𝑁𝑡×𝑟 is applied to the
transmit side, with 𝑟 ≤ 𝑠 denoting the number of modulated
data symbols, the optimum transmit-receive spatial filter (after
equalization) is identified by the Wiener solution:

A ≜ (HBB†H† + I𝑁𝑟)
−1HB. (31)

More importantly, the optimum transmit matrix B is inherently
related to the channel eigenmodes via

B ≜ UP (32)

where U ∈ ℂ𝑁𝑡×𝑟 is a matrix whose columns are the 𝑟
dominant eigenvectors of H†H while P = diag{√𝑝𝑖}𝑟𝑖=1 is
a diagonal power allocation matrix whose entries fulfill the
constraint

∑𝑟
𝑖=1 𝑝𝑖 = 𝛾. Then, it has been shown [22], [23],

[25] that the instantaneous SNR across the 𝑘-th eigenmode is

𝛾𝑘 = 𝜀2𝜆𝑘𝑝𝑘, 𝑘 = 1, . . . , 𝑟. (33)

The above equation implies that the eigenmode SNR is a
function of the corresponding marginal eigenvalue of the
instantaneous correlation matrix. Thus, it is critical to examine
the marginal/unordered eigenvalue distributions for which we
now derive exact and asymptotic closed-form expressions.
As before, our starting point is the joint eigenvalue PDF in
(6) although the following analytic expressions can be also
obtained by particularizing the results of [26]–[28] to the
specific case of equal LoS eigenvalues.

Theorem 7: The CDF/PDF of the maximum eigenvalue 𝜆1
of the uncorrelated non-central Wishart matrix S in (5) are
respectively given by

𝐹𝜆1(𝑥) = Pr(𝜆1 ≤ 𝑥) = 𝑐1∣Ξ(𝑥)∣ (34)

𝑓𝜆1(𝜆1) = 𝑐1

𝑠∑
ℓ=1

∣Ξℓ(𝜆1)∣ (35)

where Ξ(𝑥) and Ξℓ(𝜆1) are 𝑠× 𝑠 matrices with entries

{Ξ(𝑥)}𝑖,𝑗 =
∞∑
𝑘=0

𝜔𝑘𝛾(𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗 + 1, 𝑥)

𝑘!(𝑡+ 𝑘 − 𝑗)!
(36)

{Ξℓ(𝜆1)}𝑖,𝑗 =
⎧⎨
⎩
𝑒−𝜆1𝜆𝑡+𝑠−𝑖−𝑗1

(𝑡− 𝑗)!
0𝐹1(𝑡− 𝑗 + 1;𝜔𝜆1), 𝑗 = ℓ

{Ξ(𝜆1)}𝑖,𝑗 , 𝑗 ∕= ℓ

(37)

with 𝛾(𝑝, 𝑥) =
∫ 𝑥
0 𝑡

𝑝−1𝑒−𝑡𝑑𝑡 being the lower incomplete
gamma function [37, Eq. (8.350.1)].

Proof: In order to evaluate this probability, we employ
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{C(ℓ, 𝑝)}𝑖,𝑗 =

⎧⎨
⎩

{A(0)}𝑖,𝑗 , 𝑗 ∕= ℓ, 𝑗 ∕= 𝑝∑∞
𝑘=1

(𝑘+𝑖−1)!
(𝑘+𝑖−𝑗)!

𝜔𝑘+𝑖−𝑗

𝑘!

(∑𝑘−1
𝑛=0

1
𝑡−𝑠+𝑖+𝑛

)
, 𝑗 = ℓ or 𝑗 = 𝑝, 𝑖 ≥ 𝑗∑∞

𝑘=0
(𝑘+𝑗−1)!
(𝑘+𝑗−𝑖)!

𝜔𝑘

𝑘!

(∑𝑘+𝑗−𝑖−1
𝑛=0

1
𝑡−𝑠+𝑖+𝑛

)
, 𝑗 = ℓ or 𝑗 = 𝑝, 𝑖 < 𝑗

(26)

{D(ℓ)}𝑖,𝑗 =

⎧⎨
⎩

{A(0)}𝑖,𝑗 , 𝑗 ∕= ℓ∑∞
𝑘=2

(𝑘+𝑖−1)!
(𝑘+𝑖−𝑗)!

𝜔𝑘+𝑖−𝑗

𝑘!

(∑𝑘−2
𝑛=0

∑𝑘−1
𝑚=𝑛+1

2
(𝑡−𝑠+𝑖+𝑛)(𝑡−𝑠+𝑖+𝑚)

)
, 𝑗 = ℓ, 𝑖 ≥ 𝑗∑∞

𝑘=0
(𝑘+𝑗−1)!
(𝑘+𝑗−𝑖)!

𝜔𝑘

𝑘!

(∑𝑘+𝑗−𝑖−2
𝑛=max(0,𝑖−𝑗+2)

∑𝑘+𝑗−𝑖−1
𝑚=𝑛+1

2
(𝑡−𝑠+𝑖+𝑛)(𝑡−𝑠+𝑖+𝑚)

)
, 𝑗 = ℓ, 𝑖 < 𝑗

(27)

its integral definition, that is

𝐹𝜆1(𝑥) = Pr(𝜆𝑠 < . . . 𝜆1 ≤ 𝑥) =

∫
𝐷1

𝑓(𝝀)𝑑𝜆1 . . . 𝑑𝜆𝑠 (38)

with 𝒟1 = {𝜆𝑠 < . . . < 𝜆1 < 𝑥}. From inspection, the above
integral is of the same type as the one in (12). This implies
that the same technique can be applied for tackling the product
of determinants in (6). The result follows trivially by using the
multilinear property of a determinant as in (12) and invoking
the definition of 𝛾(𝑝, 𝑥). The PDF expression is obtained by
differentiating (34) with respect to (wrt) 𝑥.

The truncation error, ℛ1, for the infinite series in (36) if
𝑇1 − 1 terms are used, is expressed as

ℛ1 =

∞∑
𝑘=𝑇1

𝜔𝑘𝛾(𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗 + 1, 𝑥)

𝑘!(𝑡+ 𝑘 − 𝑗)!

=

∞∑
𝑘=𝑇1

𝜔𝑘𝑥(𝛼(𝑘)+1)
1𝐹1(𝛼(𝑘) + 1;𝛼(𝑘) + 2;−𝑥)

𝑘!(𝑡+ 𝑘 − 𝑗)!(𝛼(𝑘) + 1)

<
𝜔𝑇1𝑥(𝛼(𝑇1)+1)

1𝐹1 (𝛼(𝑇1) + 1;𝛼(𝑇1) + 2;−𝑥)
𝑇1!(𝑡+𝑇1−𝑗)!(𝛼(𝑇1) + 1)

× 2𝐹3(𝛼(𝑇1) + 1, 1;𝑇1+1, 𝑡+𝑇1−𝑗+1, 𝛼(𝑇1) + 2;𝜔𝑥)

where the second line follows from 𝛾(𝛼, 𝑦) = 𝑦𝛼1𝐹1(𝛼;𝛼 +
1;−𝑦)/𝛼 [39, Eq. (6.5.12)] and the third since 1𝐹1(𝛼;𝛼 +
1;−𝑦) is a monotonically decreasing function in 𝛼 for all
positive values of 𝛼 and 𝑦. Note that (34) can be alternatively
obtained via [43, Eq. (2)] with the aid of [30, Lemma 2].

Theorem 8: The CDF/PDF of the minimum eigenvalue 𝜆𝑠
of the uncorrelated non-central Wishart matrix S in (5) are
respectively given by

𝐹𝜆𝑠(𝑥) = Pr(𝜆𝑠 ≤ 𝑥) = 1− 𝑐1∣Θ(𝑥)∣ (39)

𝑓𝜆𝑠(𝜆𝑠) = 𝑐1

𝑠∑
ℓ=1

∣Θℓ(𝜆𝑠)∣ (40)

where Θ(𝑥) and Θℓ(𝜆𝑠) are 𝑠× 𝑠 matrices with entries

{Θ(𝑥)}𝑖,𝑗 =

∞∑
𝑘=0

𝜔𝑘Γ(𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗 + 1, 𝑥)

𝑘!(𝑡+ 𝑘 − 𝑗)!
(41)

{Θℓ(𝜆𝑠)}𝑖,𝑗 =

{ {Ξℓ(𝜆𝑠)}𝑖,𝑗 , 𝑗 = ℓ

{Θ(𝜆𝑠)}𝑖,𝑗 , 𝑗 ∕= ℓ.
(42)

Proof: The proof follows a similar line of reasoning
as in Theorem 7 with the only difference pertaining to the
integration region since we now have that

𝐹𝜆𝑠(𝑥) = 1− Pr(𝜆1 > . . . 𝜆𝑠 > 𝑥)

= 1−
∫
𝐷2

𝑓(𝝀)𝑑𝜆1 . . . 𝑑𝜆𝑠 (43)

with 𝒟2 = {𝑥 < 𝜆𝑠 < . . . < 𝜆1}. The PDF expression is
obtained by differentiating (39) wrt 𝑥.

We note that since {Θ(𝑥)}𝑖,𝑗 = 1𝐹1(𝑡+𝑠−𝑖−𝑗+1; 𝑡−𝑗+
1;𝜔)(𝑡+ 𝑠− 𝑖− 𝑗)!/(𝑡− 𝑗)!−{Ξ(𝑥)}𝑖,𝑗 , we can express the
absolute truncation error, ℛ2, of (41) simply as ℛ2 = ∣ℛ1∣.

Theorem 9: The CDF of the 𝑘-th (𝑘 ≥ 2) largest eigenvalue
𝜆𝑘 of the uncorrelated non-central Wishart matrix S in (5) is

𝐹𝜆𝑘
(𝑥) = Pr(𝜆𝑘 ≤ 𝑥) = 𝐹𝜆𝑘−1

(𝑥) + 𝑐1
∑
1

∣Ω(𝑥)∣ (44)

where
∑
1

represents the sum over all (𝛼1, . . . , 𝛼𝑠) satisfying

(𝛼1 < . . . < 𝛼𝑘−1) and (𝛼𝑘 < . . . < 𝛼𝑠) with (𝛼1, . . . , 𝛼𝑠)
being a permutation of (1, . . . , 𝑠), while Ω(𝑥) is an 𝑠 × 𝑠
matrix with entries

{Ω(𝑥)}𝛼𝑖,𝑗
=

{ {Θ(𝑥)}𝛼𝑖,𝑗
, 𝑖 = 1, . . . , 𝑘 − 1

{Ξ(𝑥)}𝛼𝑖,𝑗
, 𝑖 = 𝑘, . . . , 𝑠.

(45)

Proof: The proof stems directly from Theorems 7 and 8
using the approach of [25, Theorem 3].

The PDF expression for the 𝑘-th eigenvalue follows by
differentiating (44) wrt 𝑥 where for the derivative of ∣Ω(𝑥)∣ we
can use (37) and (42) and the properties for the first derivative
of a determinant. Due to the notation being cumbersome
however, we do not present the final expression in this paper.

Apart from the ordered eigenvalues, an equally important
feature of MIMO systems is the unordered (generic) eigen-
value of S, whose PDF can lead to the ergodic capacity as
originally demonstrated in [1].

Theorem 10: The PDF of the unordered eigenvalue 𝜆 of
the uncorrelated non-central Wishart matrix S in (5) is

𝑓𝜆(𝜆) =
𝑐1
𝑠

𝑠∑
𝑛=1

𝑠∑
𝑚=1

(−1)𝑚+𝑛𝜆
𝑡+𝑠−𝑚−𝑛

0𝐹1(𝑡−𝑚+ 1;𝜆𝜔)

(𝑡−𝑚)!

× 𝑒−𝜆 ∣Π(𝑚,𝑛, 𝜔)∣
where Π(𝑚,𝑛, 𝜔) ∈ ℝ(𝑠−1)×(𝑠−1) is defined as

{Π(𝑛,𝑚, 𝜔)}𝑖,𝑗 =
(𝑡+ 𝑠− 𝑟𝑗,𝑚 − 𝑟𝑖,𝑛)!

(𝑡− 𝑟𝑗,𝑚)!

× 1𝐹1(𝑡+𝑠−𝑟𝑗,𝑚−𝑟𝑖,𝑛+1, 𝑡−𝑟𝑗,𝑚+1;𝜔)
(46)

with

𝑟𝑥,𝑦 ≜
{
𝑥, if 𝑥 < 𝑦

𝑥+ 1, if 𝑥 ≥ 𝑦.
(47)
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Proof: The proof is based on applying the framework of
[26] to the joint ordered eigenvalue PDF (6). To this end, we
first express the generic eigenvalue 𝜆 as

𝑓𝜆(𝜆) =

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

𝑓(𝝀)

𝑠!
d𝜆𝑠 . . . d𝜆3d𝜆2 (48)

where we have used the property that the unordered joint
eigenvalue PDF is 𝑓(𝝀)/𝑠!. Substituting the involved deter-
minants from (7) into (48) and thereafter introducing [26,
Corollary 1, Eq. (21)], we can obtain the desired result after
solving the resulting integral using [37, Eq. (7.52.5)]∫ ∞

0

𝑒−𝑥𝑥𝜈−1
𝑝𝐹𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞;𝛼𝑥)

= Γ(𝜈)𝑝+1𝐹𝑞 (𝜈, 𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞;𝛼)

for 𝑝 < 𝑞 and ℝ(𝜈) > 0.
It is interesting to note that the expression (13) for the exact

mean MI can be alternatively obtained by combining Telatar’s
approach [1] with Theorem 10 via the relationship:

E [𝐼(H)] =
𝑠

ln 2

∫ ∞

0

log(1 + 𝛾𝑐𝑢)𝑓𝜆(𝑢)d𝑢. (49)

A. Asymptotic Marginal Eigenvalue Expressions

We hereafter derive first-order expansions for the marginal
eigenvalue distributions of the ordered eigenvalues 𝜆𝑘, 𝑘 =
1, . . . , 𝑠. These expressions will be particularly useful when
analyzing the asymptotic performance of MIMO systems for
small outage (e.g. 0.01, 0.001). We begin with the following
theorem:

Theorem 11: The first-order expansions of the CDF/PDF
of the 𝑘-th (𝑘 ≥ 2) largest eigenvalue 𝜆𝑘 of the uncorrelated
non-central Wishart matrix S in (5) around 𝜆𝑘 = 0+ are

𝐹𝜆𝑘
(𝜆𝑘) = 𝑐1𝜆

(𝑡−𝑘+1)(𝑠−𝑘+1)
𝑘

∣Δ1∣∣Δ2∣
Γ𝑠(𝑡)

+ 𝑜
(
𝜆
(𝑡−𝑘+1)(𝑠−𝑘+1)
𝑘

)
(50)

𝑓𝜆𝑘
(𝜆𝑘) = 𝑐1(𝑡− 𝑘 + 1)(𝑠− 𝑘 + 1)𝜆

(𝑡−𝑘+1)(𝑠−𝑘+1)−1
𝑘

× ∣Δ1∣∣Δ2∣
Γ𝑠(𝑡)

+ 𝑜
(
𝜆
(𝑡−𝑘+1)(𝑠−𝑘+1)−1
𝑘

)
(51)

where the involved matrices Δ1 ∈ ℝ(𝑘−1)×(𝑘−1) and Δ2 ∈
ℝ(𝑠−𝑘+1)×(𝑠−𝑘+1) are respectively defined as

{Δ1}𝑖,𝑗 = (𝑡+ 𝑠− 𝑖− 𝑗)!

× 1𝐹1(𝑡+ 𝑠− 𝑖− 𝑗 + 1; 𝑡− 𝑗 + 1;𝜔) (52)

{Δ2}𝑖,𝑗 = 1

𝑡+ 𝑠− 2𝑘 + 3− 𝑖− 𝑗
. (53)

Proof: A detailed proof is given in Appendix C.
Corollary 1: The first-order expansions of the CDF/PDF of

the maximum eigenvalue 𝜆1 of the uncorrelated non-central
Wishart matrix S in (5) around 𝜆1 = 0+ are respectively given
by

𝐹𝜆1 (𝜆1) =
Γ𝑠(𝑠)

Γ𝑠(𝑡+ 𝑠)
𝑒−𝑠𝑡𝐾𝜆𝑠𝑡1 + 𝑜(𝜆𝑠𝑡1 ) (54)

𝑓𝜆1(𝜆1) =
𝑠𝑡Γ𝑠(𝑠)

Γ𝑠(𝑡+ 𝑠)
𝑒−𝑠𝑡𝐾𝜆𝑠𝑡−1

1 + 𝑜(𝜆𝑠𝑡−1
1 ). (55)

Proof: The proof uses similar methodology as above, with
the starting point being (34) for the exact CDF of 𝜆1. The same
result can be obtained by setting 𝑘 = 1 in (50) and noting that
∣Δ2∣ = ∣1/(𝑡+ 𝑠− 𝑖− 𝑗 +1)∣ = Γ𝑠(𝑠)

2Γ𝑠(𝑡)/Γ𝑠(𝑡+ 𝑠). The
expression in (55) is obtained by differentiating (54) wrt 𝜆1.

We point out the similarity of (54)–(55) with the corre-
sponding expressions for the case of distinct LoS eigenvalues
with rank-𝐿 (𝐿 ≤ 𝑠) mean channel matrix [16, Theorem 4].
This implies that the rank of the mean channel matrix has no
impact on the asymptotic performance of 𝜆1. This observation
is critical when assessing the performance of maximum ratio
combiners (MRC) where all power is allocated to the dominant
eigenmode. From (50), we can infer that for a given total
number of antennas 𝑡 + 𝑠, the optimum choice in terms of
outage is to maximize 𝑡𝑠, or equivalently to evenly distribute
the number of antennas at both ends, i.e. 𝑁𝑡 = 𝑁𝑟. The same
conclusion stems from (54) and is in agreement with [43].

B. Statistics of the Eigenmode SNR: Outage Probability and
PDF

In general, the outage probability is a critical metric in the
performance evaluation of all communication systems, since it
indicates the probability that the SNR falls below a predefined
threshold, 𝛾th. Its study has been thoroughly addressed in
different papers for various fading scenarios (e.g. [44], [45]).
For the considered problem, we will assume that power is
uniformly distributed across all active subchannels so that
𝑝𝑘 = 𝛾/𝑟. Then, recalling (33), we can express the outage
of the 𝑘-th eigenmode, 𝑃out,𝑘, as

𝑃out,𝑘 ≜ Pr(𝛾𝑘 ≤ 𝛾th) = Pr

(
𝜆𝑘 ≤ 𝛾th

𝜀2𝑝𝑘

)

= 𝐹𝜆𝑘

(
𝛾th(𝐾 + 1)𝑟

𝛾

)
, 𝑘 = 1, . . . , 𝑟. (56)

Combining (56) with (34), (39) and (44) we can get analytical
expressions for the outage of any MIMO eigenmode. For small
outage probabilities the asymptotic expressions in (50) and
(54) can be invoked:

𝑃∞
out,𝑘 =

𝑐1∣Δ1∣∣Δ2∣
Γ𝑠(𝑡)

(
𝛾th(𝐾 + 1)𝑟

𝛾

)(𝑡−𝑘+1)(𝑠−𝑘+1)

+ 𝑜

((
𝛾th(𝐾 + 1)𝑟

𝛾

)(𝑡−𝑘+1)(𝑠−𝑘+1)
)
, 𝑘 ≥ 2 (57)

𝑃∞
out,𝑘 =

Γ𝑠(𝑠)

Γ𝑠(𝑡+ 𝑠)
𝑒−𝑠𝑡𝐾

(
𝛾th(𝐾 + 1)𝑟

𝛾

)𝑠𝑡

+ 𝑜

(
𝛾th(𝐾 + 1)𝑟

𝛾

)𝑠𝑡
, 𝑘 = 1. (58)

In addition, the eigenmode SNR PDF can be readily obtained
as follows

𝑓𝛾𝑘(𝛾𝑘) =

(
(𝐾 + 1)𝑟

𝛾

)
𝑓𝜆𝑘

(
𝛾𝑘(𝐾 + 1)𝑟

𝛾

)
, 𝑘 = 1, . . . , 𝑟.

(59)

V. NUMERICAL RESULTS

In this section, the theoretical results presented in Sec-
tions III and IV are validated. To this end, 105 random real-
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Fig. 1. Analytical and simulated mean MI of optimized and conventional
MIMO configurations against the Ricean 𝐾-factor (𝛾 = 10 dB).

izations of the channel matrix H are generated according to
(1), assuming 𝑑𝑡 = 𝑑𝑟, for each 𝐾-factor under consideration
(carrier frequency 5.2 GHz, 𝐷 = 5 m). We first investigate
the effects of deterministic components on the mean MI. In
order to get a better understanding, our analysis also considers
a conventional rank-1 mean channel matrix with spacings
𝑑𝑡 = 𝑑𝑟 = 𝜆/2.

In Fig. 1, the ergodic capacity is depicted against the 𝐾-
factor assuming both optimized/conventional structures for the
mean channel matrix. The theoretical curves are based on
Theorem 3 for the former case and [6, Eq. (37)] for the latter.

It is observed that the match between theory and simulation
is excellent in all cases under consideration, thereby validating
the correctness of the proposed analytical expressions. The
graph clearly contradicts the common belief that the pres-
ence of LoS components reduces the advantages of MIMO
technology due to limited amount of scattering, compared to
Rayleigh fading conditions. As 𝐾 gets higher, optimized con-
figurations offer the maximum MIMO capacity. In fact, with
no transmit CSI and under UPA any configuration of arbitrary
rank will deliver a capacity between these two extremes. On
the other hand, for 𝐾 ≤ 0 dB the advantages of optimized
configurations diminish and in the limit, 𝐾 → −∞ dB, the
LoS component vanishes and we end up with a pure i.i.d.
Rayleigh channel. These results are consistent with [9]–[13].

In Fig. 2, the mean MI is illustrated against the SNR, 𝛾, for a
given𝐾 = 3 dB and three different MIMO setups. The outputs
of a Monte-Carlo simulator are compared with the exact
and asymptotic high-SNR expressions of Theorem 3 and 5,
respectively. Once more, there is an exact agreement between
the analytical curves and the Monte-Carlo simulations; further,
the high-SNR expressions become sufficiently tight at 𝛾 ≥ 15
dB and thus can explicitly predict the mean MI for most
practical SNR values.

Fig. 3 investigates the effects of SNR/number of antennas
on the MI variance. The exact and high-SNR expressions of
Theorem 4 and 6, are respectively considered. Both parameters
tend to increase the channel randomness, though for high
SNR the variance is much smaller than the mean [21]. As
expected, the asymptotic curve is independent of the SNR and
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Fig. 3. Analytical, high-SNR approximation and simulated MI variance
against the SNR, 𝛾 (𝐾 = 3 dB).

also becomes exact at moderate SNRs, especially when small
MIMO systems are deployed. These observations are in line
with [6], [16], [21].

In Fig. 4, the accuracy of the Gaussian approximation
introduced in Section III-C is tested. The analytical curves are
overlaid with the simulation results. The match is precise for
all cases, even when the number of antennas is low, which
highlights the importance of the analytical expressions for
the MI mean and variance in the context of outage capacity
characterization. A higher𝐾-factor shifts the PDFs to the right
(higher mean) and in parallel reduces the MI variance (i.e.
more deterministic channels).

In the second part of the evaluation process, we consider the
MBF performance of optimized LoS MIMO configurations.
We first verify the analytical marginal eigenvalue expressions
as given in Theorems 7–9 for a 3 × 8 MIMO system (c.f.
Fig. 5). In all cases, the match is exact while all eigenvalues
benefit from a higher 𝐾-factor (i.e. enhanced channel con-
ditioning and thus link stabilization) which is in fundamental
contrast with rank-deficient configurations where only a subset
of eigenmodes is fostered by strong LoS components.

Fig. 6 more closely addresses the individual eigenmode
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Fig. 5. Analytical and simulated marginal eigenvalue CDFs of a 3× 8 LoS
MIMO system.

outage probability against the SNR, 𝛾, of a 4 × 4 MIMO
system. The analytical and high-SNR approximation curves
have been respectively generated via (56) and (57). The
latter become exact even at moderate SNR values, while an
increase in SNR pronounces the difference in outage between
the first two dominant subchannels and the weakest ones.
This important observation was also made in [25], and has
motivated the design of efficient transmission schemes which
adaptively allocate power to the active eigenmodes.

We finally consider a MIMO-MRC Rx, where only the dom-
inant substream is used and 𝑟 = 1, 𝑝1 = 𝛾. In Fig. 7, the output
SNR PDF of MIMO-MRC is plotted for various antenna
setups with the analytical curves being generated according to
(59). By increasing the maximum number of antennas𝑁𝑡, both
the mean and spread of the SNR increase (enhanced diversity
order) while an increase in 𝑁𝑟 affects mainly the mean SNR
(higher multiplexing gains). In Fig. 8, the outage is plotted
versus the SNR for various antenna configurations with the
same total number of antennas. As explicitly proved via (54),
the optimal choice that asymptotically minimizes outage is to
deploy symmetric MIMO systems with 𝑁𝑡 = 𝑁𝑟.
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VI. CONCLUSION

Optimized LoS MIMO configurations are of high practical
importance for a plethora of emerging applications (e.g. indoor
WLANs, peer-to-peer and vehicular communications) but,
surprisingly, few publications have been reported on their
statistical analysis. In fact, their capacity performance is the
best achievable by any LoS MIMO configuration under UPA,
which is the most meaningful transmission scheme when
the Tx has no CSI. In this paper, our main goal has been
to bridge this gap by providing a systematic capacity and
MBF performance analysis. Using elements from random
matrix theory, we have extended some recent results to the
practically interesting case of orthogonal LoS subchannels,
when the eigenvalues of the mean channel matrix become
identical. In the first part of the paper, we have considered
the first and second-order MI statistics for which novel exact
and asymptotic high-SNR expressions were deduced. Our
analytical results were further used to test the well-known
Gaussianity approximation which was shown to hold under
different simulation scenarios and low number of antennas.

In the second part of the paper, our focus was on the MBF
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Fig. 8. Analytical, high-SNR approximation and simulated outage probability
of a 4× 4 LoS MIMO system against the SNR, 𝛾.

performance assessment of these topologies via the channel
eigenmodes. The exact marginal eigenvalue CDFs/PDFs along
with their first-order expansions, around the origin, were de-
rived and used to gain valuable insights into the SNR statistics
(outage and PDF) of the associated MIMO eigenmodes. For
the case of MRC receivers, where all power is allocated to the
strongest eigenmode, it was demonstrated that the geometry
of the Ricean paths has no impact on the asymptotic outage
while the optimum choice in this context is to deploy the
same number of transmit/receive antennas. As future work,
the analytical knowledge of the eigenmode distributions can
aid the design of adaptive algorithms, which systematically
adapt the number of active eigenmodes, and thus achieve near-
optimum performance with lower complexity.

APPENDIX A
PROOF OF THEOREM 1

The proof relies on the joint eigenvalue PDF for the case
of distinct eigenvalues, which was originally given by James
in [36] and manipulated into a more tractable form in [6]. In
particular, we have

𝑓(𝝀) =
etr(−𝝎)

((𝑡− 𝑠)!)𝑠∣Φ(𝝎)∣ ∣Ψ(𝝀)∣∣Φ(𝝀)∣
𝑠∏
ℓ=1

𝜆𝑡−𝑠ℓ 𝑒−𝜆ℓ (60)

where {Ψ(𝝀)}𝑖,𝑗 = 0𝐹1(𝑡 − 𝑠 + 1;𝜆𝑖𝜔𝑗), When the LoS
eigenvalues coincide, (60) contains a term of the form

lim
𝜔1=𝜔2...=𝜔𝑠=𝜔

∣0𝐹1(𝑡− 𝑠+ 1;𝜆𝑖𝜔𝑗)∣
∣Φ(𝝎)∣

= lim
𝜔1=𝜔2...=𝜔𝑠=𝜔

∣0𝐹1(𝑡− 𝑠+ 1;𝜆𝑖𝜔𝑗)∣∏𝑠
𝑖<𝑗(𝜔𝑖 − 𝜔𝑗)

. (61)

To evaluate these determinant limits we employ the technique
proposed in [30, Lemma 2]. Please note that a similar approach
was adopted by Jin et al. in [25] as well, for the case of rank-
𝐿 (𝐿 ≤ 𝑠) non-centrality matrices with distinct eigenvalues.
In particular, we successively apply the Cauchy’s Mean Value
Theorem and as such we take the (𝑠− 𝑗)-th derivative across

the 𝑗-th column, evaluated at 𝜔𝑗 = 𝜔, or

lim
𝜔1=𝜔2...=𝜔𝑠=𝜔

∣Ψ(𝝀)∣
∣Φ(𝝎)∣ =

∣∣ d𝑠−𝑗

d𝜔𝑠−𝑗 0𝐹1(𝑡− 𝑠+ 1;𝜆𝑖𝜔)
∣∣

Γ𝑠(𝑠)

=
((𝑡− 𝑠)!)𝑠

Γ𝑠(𝑠)

∣∣∣∣
∞∑
𝑘=0

𝜔𝑘𝜆𝑘+𝑠−𝑗𝑖

𝑘!(𝑡+ 𝑘 − 𝑗)!

∣∣∣∣
where for the differentiation of 0𝐹1(𝛼;𝑥) we have used [39,
Eq. (15.2.2)].

APPENDIX B
PROOFS OF HIGH-SNR EXPRESSIONS FOR THE MI

STATISTICS

A. Proof of Lemma 1

The proof relies on [18, Eq. (22)], [16, Theorem 1] in which
we consider the limiting case of identical LoS eigenvalues. To
this end, we rewrite [16, Eq. (7)] according to

𝜙(𝜐) = lim
𝜔1=𝜔2...=𝜔𝑠=𝜔

𝜀2𝑠𝜐
Γ𝑠(𝑡+ 𝜐)etr(−𝝎)

Γ𝑠(𝑡)

× ∣1𝐹1(𝑡+ 𝜐 − 𝑠+ 𝑗; 𝑡− 𝑠+ 𝑗;𝜔𝑖)𝜔
𝑗−1
𝑖 ∣∏𝑠

𝑖<𝑗(𝜔𝑗 − 𝜔𝑖)

= 𝜀2𝑠𝜐
Γ𝑠(𝑡+ 𝜐)etr(−𝝎)

Γ𝑠(𝑡)

× lim
𝜔1=𝜔2...=𝜔𝑠=𝜔

∣f(𝜔1, 𝜐), . . . , f(𝜔𝑠, 𝜐)∣∏𝑠
𝑖<𝑗(𝜔𝑗 − 𝜔𝑖)

(62)

where f(𝑥, 𝜐) ≜ [𝑓1(𝑥, 𝜐), . . . , 𝑓𝑠(𝑥, 𝜐)]
𝑇 with 𝑓𝑖(𝑥, 𝜐) =

1𝐹1(𝑡 + 𝜐 − 𝑠 + 𝑖; 𝑡 − 𝑠 + 𝑖;𝑥)𝑥𝑖−1. The above determinant
limit is of the same form as (61) and thus we only need to
compute the following derivative

𝑓𝑖(𝜔, 𝜐)
(𝑗−1) ≜ d(𝑗−1)

d𝜔(𝑗−1)
𝑓𝑖(𝜔, 𝜐)

=
d(𝑗−1)

d𝜔(𝑗−1)

∞∑
𝑘=0

(𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘
(𝑡− 𝑠+ 𝑖)𝑘

𝜔𝑘+𝑖−1

𝑘!
(63)

where (𝛼)𝑛 = 𝛼(𝛼 + 1) . . . (𝛼 + 𝑛 − 1) is the Pochhammer
symbol. We now consider two cases, these are 𝑖 < 𝑗 or 𝑖 ≥ 𝑗.
In the former case, (63) can be evaluated as

𝑓𝑖(𝜔, 𝜐)
(𝑗−1) =

∞∑
𝑘=𝑗−𝑖

(𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑘 − 1)!

(𝑡+ 𝜐 − 𝑠+ 𝑖− 1)!

× (𝑡− 𝑠+ 𝑖− 1)!𝜔𝑘+𝑖−𝑗

𝑘!(𝑡− 𝑠+ 𝑖+ 𝑘 − 1)!
(𝑘 + 𝑖− 1) . . . (𝑘 + 𝑖− 𝑗 + 1)

=
∞∑
𝑘=0

(𝑡+ 𝜐 − 𝑠+ 𝑗 + 𝑘 − 1)!

(𝑡+ 𝜐 − 𝑠+ 𝑖− 1)!

(𝑡− 𝑠+ 𝑖− 1)!

(𝑡− 𝑠+ 𝑗 + 𝑘 − 1)!

× (𝑘 + 𝑗 − 1) . . . (𝑘 + 1)
𝜔𝑘

(𝑘 + 𝑗 − 𝑖)!

=

∞∑
𝑘=0

(𝑡+ 𝜐 − 𝑠+ 𝑗 + 𝑘 − 1)!

(𝑡+ 𝜐 − 𝑠+ 𝑖− 1)!

× (𝑡− 𝑠+ 𝑖− 1)!

(𝑡− 𝑠+ 𝑗 + 𝑘 − 1)!

(𝑘 + 𝑗 − 1)!

(𝑘 + 𝑗 − 𝑖)!

𝜔𝑘

𝑘!

= 2𝐹2(𝑡+ 𝜐 − 𝑠+ 𝑗, 𝑗; 𝑡− 𝑠+ 𝑗, 𝑗 − 𝑖+ 1;𝜔)

× (𝑡− 𝑠+ 𝑖− 1)!(𝑡+ 𝜐 − 𝑠+ 𝑗 − 1)!(𝑗 − 1)!

(𝑡− 𝑠+ 𝑗 − 1)!(𝑡+ 𝜐 − 𝑠+ 𝑖− 1)!(𝑗 − 𝑖)!
. (64)
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Applying the same procedure for 𝑖 ≥ 𝑗, we have

𝑓𝑖(𝜔, 𝜐)
(𝑗−1) =

∞∑
𝑘=0

(𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘
(𝑡− 𝑠+ 𝑖)𝑘

(𝑘 + 𝑖− 1)!

(𝑘 + 𝑖− 𝑗)!

𝜔𝑘+𝑖−𝑗

𝑘!

= 2𝐹2(𝑡+ 𝜐 − 𝑠+ 𝑖, 𝑖; 𝑡− 𝑠+ 𝑖, 𝑖− 𝑗 + 1;𝜔)
𝜔𝑖−𝑗(𝑖− 1)!

(𝑖− 𝑗)!
(65)

and this concludes the proof.

B. Proof of Theorem 5

In the high-SNR regime (i.e. 𝛾 → ∞), the MI expression
in (8) is dominated by the second term, and as such

𝐼∞(H) = 𝑠 log2

(
𝛾

𝑁𝑡

)
+

1

ln 2
ln(det(W)) (66)

and thus for the mean MI it suffices to compute the term
E [ln(det(W))]. The latter can be rewritten as

E[ln(∣W∣)] = d𝜙(𝜐)

d𝜐

∣∣∣∣
𝜐=0

=
d

d𝜐
ln𝜙(𝜐)

∣∣∣∣
𝜐=0

(67)

where we have used that 𝜙(0) = 1 to obtain the last equality.
Using (21) and omitting details, we obtain

E[ln(∣W∣)] =
𝑠−1∑
𝑘=0

𝜓(𝑡− 𝑘) + 𝑠 ln(𝜀2) +
d
d𝜐 det(A(𝜐))∣𝜐=0

∣A(0)∣ .

(68)
For the evaluation of the above determinant at 𝜐 = 0, we have

d

d𝜐
∣A(𝜐)∣

=
𝑠∑
ℓ=1

∣∣∣∣f(𝜔, 𝜐), . . . , d

d𝜐

[
f(𝜔, 𝜐)(ℓ−1)

]
, . . . , f(𝜔, 𝜐)(𝑠−1)

∣∣∣∣
(69)

where we have introduced the compact notation for the
derivative wrt to 𝜔, f(𝜔, 𝜐)(𝑗−1) = d(𝑗−1)

d𝜔(𝑗−1) f(𝜔, 𝜐). In order
to compute the required derivatives, we consider two cases as
in Appendix B-A according to the values of the indices 𝑖 and
𝑗. In particular, for 𝑖 ≥ 𝑗, we use (65) to get

d

d𝜐

[
𝑓𝑖(𝜔, 𝜐)

(𝑗−1)
]
=

∞∑
𝑘=0

1

(𝑡− 𝑠+ 𝑖)𝑘

(𝑘 + 𝑖− 1)!

(𝑘 + 𝑖− 𝑗)!

𝜔𝑘+𝑖−𝑗

𝑘!

× d

d𝜐
(𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘 (70)

and
d

d𝜐
(𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘

=
d

d𝜐
(𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑘 − 1) . . . (𝑡+ 𝜐 − 𝑠+ 𝑖)

= (𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑘 − 1) . . . (𝑡+ 𝜐 − 𝑠+ 𝑖)

×
(
𝑘−1∑
𝑛=0

1

𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑛

)

= (𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘

(
𝑘−1∑
𝑛=0

1

𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑛

)
. (71)

Substituting (71) into (70), removing the vanishing 𝑘 = 0
term and setting 𝜐 = 0, we get the desired result. Likewise,

for 𝑖 < 𝑗, we use (64) to express the required derivative as

d

d𝜐

[
𝑓𝑖(𝜔, 𝜐)

(𝑗−1)
]
=

∞∑
𝑘=0

(𝑡− 𝑠+ 𝑖− 1)!

(𝑡− 𝑠+ 𝑗 + 𝑘 − 1)!

(𝑘 + 𝑖 − 1)!

(𝑘 + 𝑗 − 𝑖)!

𝜔𝑘

𝑘!

× d

d𝜐

(
(𝑡+ 𝜐 − 𝑠+ 𝑗 + 𝑘 − 1)!

(𝑡+ 𝜐 − 𝑠+ 𝑖− 1)!

)
. (72)

Using the same methodology as above and some basic alge-
braic manipulations we conclude the proof.

C. Proof of Theorem 6

In the high-SNR regime (i.e. 𝛾 → ∞), the MI variance
becomes

Var [𝐼∞(H)] = Var

[
log2 det

(
𝛾

𝑁𝑡
HH†

)]

=
1

(ln 2)2
Var [ln(det(W)] . (73)

Using [16, Eq. (165)], we can express the variance remaining
term in (73)

Var [ln(det(W)] =
d2

d𝜐2
ln(𝜙(𝜐))

∣∣∣∣
𝜐=0

=

𝑠−1∑
𝑘=0

𝜓′(𝑡− 𝑘)

+
d2

d𝜐2 det(A(𝜐))∣𝜐=0

∣A(0)∣ −
(

d
d𝜐 det(A(𝜐))∣𝜐=0

∣A(0)∣

)2

(74)

where the second line follows from differentiation of (68).
In order to compute the second derivative term in (74), we
consider the case 𝑖 ≥ 𝑗 which via (70)–(71) results in

d2

d𝜐2

[
𝑓𝑖(𝜔, 𝜐)

(𝑗−1)
]
=

∞∑
𝑘=1

1

(𝑡− 𝑠+ 𝑖)𝑘

(𝑘 + 𝑖 − 1)!

(𝑘 + 𝑖− 𝑗)!

𝜔𝑘+𝑖−𝑗

𝑘!

× d

d𝜐

(
(𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘

(∑𝑘−1
𝑛=0

1
𝑡+𝜐−𝑠+𝑖+𝑛

))
. (75)

Then, it is easy to see that

d

d𝜐

(
(𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘

(
𝑘−1∑
𝑛=0

1

𝑡+ 𝜐 − 𝑠+ 𝑖 + 𝑛

))

= (𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘

⎛
⎝(𝑘−1∑

𝑛=0

1

𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑛

)2

−
𝑘−1∑
𝑛=0

1

(𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑛)2

)

= (𝑡+ 𝜐 − 𝑠+ 𝑖)𝑘

×
(
𝑘−2∑
𝑛=0

𝑘−1∑
𝑚=𝑛+1

2

(𝑡+ 𝜐 − 𝑠+ 𝑖+ 𝑛)(𝑡+ 𝜐 − 𝑠+ 𝑖+𝑚)

)
.

(76)

Substituting (76) into (75), setting 𝜐 = 0 and following the
same process for 𝑖 < 𝑗, we can obtain the final result after
combining (74) with (69)–(72) and factorization.

APPENDIX C
PROOF OF THEOREM 11

In order to compute the first-order approximation of∑
1 ∣Ω(𝑥)∣ in (44), we have to apply a Taylor expansion
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around the origin on the elements of Ω(𝑥) in (45). For any
matrix Υ(𝑥), the Taylor expansion reads as

{Υ(𝑥)}𝑖,𝑗 =
𝑛∑
𝑝=0

{
Υ(𝑝)(0)

}
𝑖,𝑗

𝑥𝑝

𝑝!
+ 𝑜(𝑥𝑛). (77)

We now introduce the infinite polynomial representations of
both incomplete gamma functions in (36) and (41). For the
latter case, we have

{Ξ(𝑥)}𝑖,𝑗 =
∑∞

𝑘=0
𝜔𝑘𝑒−𝑥(𝑡+𝑘+𝑠−𝑖−𝑗)!

𝑘!(𝑡+𝑘−𝑗)!

×
⎛
⎝ ∞∑
𝑝=𝑡+𝑘+𝑠−𝑖−𝑗+1

𝑥𝑝

𝑝!

⎞
⎠ (78)

=

∞∑
𝑘=0

𝜔𝑘(𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗)!

𝑘!(𝑡+ 𝑘 − 𝑗)!

×
( ∞∑
𝑛=0

∞∑
𝑝=0

(−1)𝑛𝑥𝑝+𝑛+𝑡+𝑘+𝑠−𝑖−𝑗+1

𝑛!(𝑝+ 𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗 + 1)!

)
(79)

where from (78) to (79), we have expanded the exponential
function as an infinite series and then factorized. In order to
compute the first-order expansion of {Ξ(𝑥)}𝑖,𝑗 , we have to
consider only the first non-vanishing term in (77). From (79),
it is clear that the first (𝑡+ 𝑠− 𝑖− 𝑗)-th derivatives are equal
to zero when 𝑥 = 0. Thus, we only need to compute the
(𝑡+ 𝑠− 𝑖− 𝑗 + 1)-th derivative and evaluate it at zero:

{Ξ(𝑥)}(𝑡+𝑠−𝑖−𝑗+1)
𝑖,𝑗 =

∞∑
𝑘=0

𝜔𝑘(𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗)!

𝑘!(𝑡+ 𝑘 − 𝑗)!

×
( ∞∑
𝑛=0

∞∑
𝑝=0

(−1)𝑛(𝑝+ 𝑛+ 𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗 + 1)!𝑥𝑝+𝑛+𝑘

(𝑝+ 𝑛+ 𝑘)!𝑛!(𝑝+ 𝑡+ 𝑘 + 𝑠− 𝑖− 𝑗 + 1)!

)

{Ξ(𝑥}(𝑡+𝑠−𝑖−𝑗+1)
𝑖,𝑗

∣∣∣
𝑥=0

=
(𝑡+ 𝑠− 𝑖− 𝑗)!

(𝑡− 𝑗)!
. (80)

Combining (80) with (77), we get the dominant non-vanishing
term of the Taylor expansion

{Ξ(𝑥)}𝑖,𝑗 =
𝑥𝑡+𝑠−𝑖−𝑗+1

(𝑡− 𝑗)!(𝑡+ 𝑠− 𝑖− 𝑗 + 1)
+ 𝑜(𝑥𝑡+𝑠−𝑖−𝑗+1).

(81)
Following a similar procedure for {Θ(𝑥)}𝑖,𝑗 , the first-order
expansion of each element of Ω(𝑥) becomes as in (82) at the
top of next page. From (82), it is clear that only the second
matrix branch depends on 𝑥, and since 𝛼𝑖 > 0 is combined
with a negative sign, the values taken by (𝛼1, . . . , 𝛼𝑠) over
{𝑘, . . . , 𝑠} should be maximum, i.e., equal to {𝑘, . . . , 𝑠}.
From the definition of the summation

∑
1 in (44), it follows

that there will be only one determinant with the smallest
exponent in 𝑥, denoted as ∣Δid∣, which corresponds to the
identity permutation (𝛼1, 𝛼2, . . . , 𝛼𝑠) = (1, 2, . . . , 𝑠). This
determinant, ∣Δid∣, after factorization and after dropping the
𝑜(⋅) term for the sake of brevity, becomes

∣Δid∣ = 𝑥(𝑡−𝑘+1)(𝑠−𝑘+1)−(𝑠−𝑘+1)(𝑘−1)− (𝑠−𝑘+1)(𝑠−𝑘)
2

Γ𝑠(𝑡)
∣Δ(𝑥)∣

(83)

with Δ(𝑥) is defined in (84) on the top of next page. We can
now rewrite ∣Δ(𝑥)∣ using the Leibniz definition for a matrix

determinant as follows

∣Δ(𝑥)∣ =
∑
𝜎

sgn(𝜎)
𝑠∏
𝑖=1

{Δ(𝑥)}𝑖,𝜎𝑖 (85)

where 𝜎 = (𝜎1, . . . , 𝜎𝑠) is a permutation of {1, . . . , 𝑠}. Using
(84), we can get

𝑠∏
𝑖=1

{Δ(𝑥)}𝑖,𝜎𝑖

=
𝑘−1∏
𝑖=1

(𝑡+𝑠−𝑖−𝜎𝑖)!1𝐹1(𝑡+𝑠−𝑖−𝜎𝑖+1; 𝑡−𝜎𝑖+1;𝜔)

×
𝑠∏
𝑖=𝑘

𝑥𝑠+1−𝜎𝑖

𝑡+𝑠−𝑖−𝜎𝑖+1
. (86)

In order to obtain the elements with the smallest exponent
in 𝑥, we need to keep only the permutations maximizing∑𝑠

𝑖=𝑘 𝜎𝑖, and hence the unordered subset {𝜎𝑘, . . . , 𝜎𝑠} should
be equal to {𝑘, . . . , 𝑠}. Thus, the permutation 𝜎 can be split
into two permutations 𝑎 = (𝑎1, . . . , 𝑎𝑘−1) of {1, . . . , 𝑘 − 1}
and 𝑏 = (𝑏𝑘, . . . , 𝑏𝑠) of {𝑘, . . . , 𝑠} and as such the determinant
in (83) can be rewritten as

∣Δ(𝑥)∣ =
∑
𝑎

sgn(𝑎)
𝑘−1∏
𝑖=1

{Δ(𝑥)}𝑖,𝑎𝑖

×
∑
𝑏

sgn(𝑏)
𝑠∏
𝑖=𝑘

{Δ(𝑥)}𝑖,𝑏𝑖 (87)

which after some basic algebra and factorization of 𝑥 becomes

∣Δ(𝑥)∣ = 𝑥(𝑠−𝑘+1)(𝑘−1)+ (𝑠−𝑘+1)(𝑠−𝑘)
2 ∣Δ1∣∣Δ2∣. (88)

Substituting (88) in (83) yields the Taylor expansion of∑
1 ∣Ω(𝑥)∣, which scales as 𝑥(𝑡−𝑘+1)(𝑠−𝑘+1) . The proof con-

cludes after observing that the (𝑘 − 1)-th eigenvalue in (44)
scales with a larger exponent and thus can be neglected. The
PDF expression (51) follows by differentiating (50) wrt 𝑥.
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