
Computers & Operations Research 40 (2013) 80–90
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

http://d

$The

initiativ

Centre
n Corr

52056 A

E-m

koster@

aachen.
journal homepage: www.elsevier.com/locate/caor
A robust optimisation model and cutting planes for the planning of
energy-efficient wireless networks$
Grit Claßen a,b,n, Arie M.C.A. Koster a, Anke Schmeink b

a Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
b UMIC Research Centre, RWTH Aachen University, 52056 Aachen, Germany
a r t i c l e i n f o

Available online 18 June 2012

Keywords:

Robust optimisation

Wireless network planning

Uncertainty

Price of robustness

Cutting planes
48/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.cor.2012.05.020

research described in this paper was su

e of the German federal and state governmen

at RWTH Aachen University.

esponding author at: UMIC Research Centre

achen, Germany.

ail addresses: classen@umic.rwth-aachen.de (

math2.rwth-aachen.de (A.M.C.A. Koster), sch

de (A. Schmeink).
a b s t r a c t

In this paper, we present an optimisation model for the energy-efficient planning of future wireless

networks. By applying robust optimisation, we extend this model to a robust formulation which

considers demand uncertainties. The computability of the resulting model is moderate. Hence, we

apply three different cutting plane approaches for an improvement. Furthermore, an extensive case

study is performed to examine the price of robustness, to compare the robust solution to conventional

planning, and to explore the performance of the cutting planes.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Wireless networks consume an increasing amount of energy.
As an example, the energy consumption of Vodafone Group
increased by about 35% from 2008/09 to 2010/11 [28]. Such an
increase is mainly caused by drastically rising user demands
which lead to the necessity of installing more base stations
(BSs) implying a higher energy consumption (not only by signal
power but also by air-conditioning, etc. [11]). Thus, in 2010/2011
Vodafone Group operated 224,000 BSs with a total energy con-
sumption of 4117 GWh [28]. These high user demands nowadays
(compared to the requirements for ordinary telephony and short
message services) result from, e.g., traffic-intensive smartphone
applications and will continue to rise due to novel applications
such as Car-to-X communication, augmented reality or Ambient
Assisted Living.

User demands and resource restrictions have been considered
in the planning of third generation (3G) networks [1,12,15,25].
Nevertheless, these networks reach the limits of their capacity,
which means that high data rates can be offered, but only for
some users and with limited coverage. One way to tackle the
problem of insufficient network performance is to utilise a couple
of advanced techniques such as Orthogonal Frequency Division
Multiple Access (OFDMA) for future wireless networks. However,
ll rights reserved.
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an optimal planning is of utmost importance to fully utilise the
gains of those techniques and to reduce the energy consumption.

The energy efficiency of wireless networks has recently
attracted a great deal of attention: [2,7,8,14,23,24] and references
therein, to name just some publications. Current methods for the
planning of energy-efficient networks require a deterministic
model of the problem at hand. Many factors in the real problem
are, however, non-deterministic. User movements as well as
fluctuating bit rate requirements and channel conditions are just
three of prominent examples of uncertain parameters.

A special sector of mathematical optimisation which allows to
handle uncertain data is robust optimisation. If the probability
distribution of the uncertain factors is unknown, the G-robustness
concept introduced by Bertsimas and Sim [3,4] is a promising
approach. This approach limits the number of uncertain entries by
a robustness parameter G. The robustness of the solution can then
be adapted by varying the parameter. At the same time, the
complexity of the problem is not significantly increased.

In this paper, we present an integer linear program (ILP) for
the planning of energy-efficient wireless networks which con-
siders downlink (DL) data transmission and guarantees a certain
link quality while inter-cell interference is limited by means of a
conflict graph. The ILP is based on [13] and was first presented
in [9]. To extend the deterministic model to a robust formulation,
we apply the G-robustness approach while considering uncertain
user demands. Exploiting linear programming duality, the result-
ing robust reformulation is again linear. The increased number of
variables and constraints however make the robust formulation
computationally less tractable than the deterministic model.

To increase the performance of ILP solvers, we apply three
types of cutting planes (cuts) to our robust optimisation model.
On the one hand, we implement the well-known variable upper
bounds and maximal clique inequalities. On the other hand, we
extend the class of cover inequalities, known for the knapsack
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problem, to robust cover inequalities following an approach
presented in [18]. The separation problem for this class of valid
inequalities is solved via a heuristic approach.

In our computational study, we focus on the comparison of the
robust planning model with conventional wireless network plan-
ning and on the price of robustness. Additionally, we briefly
discuss an alternative single objective formulation and evaluate
the performance of the different cutting plane approaches.

The remainder of this paper is organised as follows. In Section
2, we present the system model and an ILP for the planning of
energy-efficient but static wireless networks. To deal with
demand uncertainties, we derive a robust optimisation model in
Section 3. By means of three types of cuts, which are presented in
Section 4, we enhance the computability of the robust model. In
Section 5, we present an extensive computational study to
demonstrate the gains of our robust formulation and to evaluate
the performance of the cuts. Furthermore, we discuss an alter-
native single objective formulation leading to pareto optimal
solutions. We conclude this paper with some final remarks in
Section 6.
2. Preliminaries and deterministic problem formulation

In this section, we first give some preliminaries before stating
an optimisation model for the energy-efficient wireless network
planning problem considering DL data transmission (cf. [9]).

BS candidate sites, that is site location and configurations, are
consolidated in the set S. Each BS sAS consumes power ps and
provides a total DL bandwidth bs if it is deployed. We merge the
traffic demand of users in a small area to a single traffic demand
node (TN) [16,26]. The set of TNs is denoted by T. Each tAT has a
demand wt and can be assigned to at most one BS representing
hard handover, which applies, e.g., to 4th generation networks.

In future wireless networks, which utilise techniques such as
OFDMA, no intra-cell interference occurs and is thus left out in our
model. On the other hand, we limit inter-cell interference by
requiring that the installed BSs have to constitute an independent

set in a predefined conflict graph G¼ ðS,EÞ. An independent set is a
subset S0DS such that there does not exist an edge ijAE for all i,jAS0.

To guarantee a certain link quality, we define a value est, called
spectral efficiency, for each BS-TN pair (s,t). This parameter gives
the ratio between data rate and bandwidth and incorporates, for
example, the modulation and coding scheme that is supported by
the associated signal-to-noise ratio (SNR). To establish a trans-
mission link, the spectral efficiency must exceed a certain thresh-
old emin. (Note that this restriction implicitly also guarantees a
minimum SNR.) This constraint is included in the following
auxiliary sets of indices:

SnT :¼ fðs,tÞAS� T : est Zeming,

St :¼ fsAS : ðs,tÞASnTg 8tAT ,

Ts :¼ ftAT : ðs,tÞASnTg 8sAS:

The amount of bandwidth that is allocated to TN t from BS s, if t is
served by s, can be computed by division of demand wt by
spectral efficiency est.

The variables we utilise in our problem formulation are
denoted as follows. Let xsAf0;1g indicate whether or not BS
sAS is deployed and zst Af0;1g whether tATs is assigned to s.
Furthermore, we introduce a slack variable ut which is equal to
one if TN t is not served by any BS. The objective is to minimise
the total power consumption of the network while the number of
covered TNs is maximised. Hence, the number of TNs not served
by any BS is minimised. (Without this part, the optimal solution
would be zero.) To combine these conflicting objectives, we
introduce a scaling parameter l. Note that instead of using the
scaling parameter l, it is also possible to formulate a single
objective model as we will discuss in Section 5.4.

The multi-objective optimisation model can now be written as

min
X
sAS

psxsþl
X
tAT

ut , ð1aÞ

s:t:
X
sA St

zstþut ¼ 1 8tAT , ð1bÞ

xiþxjr1 8ijAE, ð1cÞ

X
tATs

wt

est
zst rbsxs 8sAS, ð1dÞ

xs,zst ,ut Af0;1g 8sAS, ðs,tÞASnT , tAT : ð1eÞ

Constraints (1b) ensure that all TNs are either covered by exactly
one BS or not covered at all. Constraints (1c) guarantee an
independent set of deployed BSs, whereas constraints (1d) ensure
that the total bandwidth allocated does not exceed the total
available DL bandwidth. For each BS s the latter constraint repre-
sents a capacity constraint, hence a knapsack constraint with variable
right hand side. Furthermore, these constraints implicitly make sure
that a TN can be assigned to a BS if and only if this BS is deployed.
Model (1) has 9S9þ9SnT9þ9T9 variables and 9T9þ9E9þ9S9
constraints.
3. C-Robust formulation

Many factors of wireless networks are uncertain such as
channel conditions or bit rate requirements. In this paper, we
focus on the uncertainty of TN demands. These incorporate
fluctuating bit rate requirements of the mobile users as well as
the movement of users: If a user moves from one area, aggregated
as TN t1, to another, denoted by TN t2, the demand value wt1

will
decrease while wt2

will rise.
To incorporate these uncertainties in model (1), we apply the

robust optimisation approach presented in [4]. The demand
values are now modelled as symmetric and bounded random
variables ~wt that take values in the interval ½wt�ŵt ,wtþŵt�,
where wt denotes a nominal value and ŵt its highest deviation.
We assume that at most GAf0, . . . ,9T9g many demand values
deviate from their nominal value wt simultaneously (in the worst
case towards wtþŵt). Hence, we replace constraints (1d) by

X
tATs

wt

est
zstþ max

T 0DTs ,9T 09rG

X
tAT 0

ŵt

est
zst rbsxs 8sAS, ð2Þ

which are non-linear. The obvious way to linearise (2) is to
compute all possible sets T 0. However, this might lead to an
exponential number of constraints. In [19], computations for a
structurally comparable robust problem show that the exponen-
tial-sized formulation is outperformed by the following approach:

For a fixed BS s and a solution (x,z), the maximum in constraint
(2) can be formulated as the following self-contained ILP:

max
T 0DTs ,9T 09rG

X
tAT 0

ŵt

est
zst ¼max

X
tATs

ŵt

est
zstjt ð3aÞ

s:t:
X
tATs

jt rG ð3bÞ

jt Af0;1g 8tATs: ð3cÞ

Since zst is fixed, the objective is not quadratic but linear. Here, jt

is a binary variable denoting the selection of Ts. It is easy to verify
that (3) is equivalent to its LP relaxation. Thus, LP duality can be
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exploited and results in the dual formulation

max
T 0DTs ,9T 09rG

X
tAT 0

ŵt

est
zst ¼minGmsþ

X
tATs

nst ð4aÞ

s:t: msþnst Z
ŵt

est
zst 8tATs ð4bÞ

msZ0, nst Z0 8tATs: ð4cÞ

Now, we can replace the maximum in constraints (2) by (4a) and
adding constraints (4b) and (4c). Since we have a less-than-or-
equal condition, we can weaken the constraint by ignoring the
minimum condition, which then results in a linear formulation.
The complete robust model now reads

min ð1aÞ

s:t: ð1bÞ; ð1cÞ; ð1eÞX
tATs

wt

est
zstþGmsþ

X
tATs

nst rbsxs 8sAS ð5aÞ

msþnst Z
ŵt

est
zst 8ðs,tÞASnT ð5bÞ

msZ0, nst Z0 8sAS, ðs,tÞASnT : ð5cÞ

Note that (5) has, compared to (1), 9S9þ9SnT9 extra variables
and 9SnT9 extra constraints.
4. Cutting planes

A standard procedure for solving ILPs is the branch-and-bound
algorithm. It can significantly be improved by cutting planes, i.e.,
inequalities that are valid for all integer solutions but not for
some solutions of the linear relaxation. By means of such inequal-
ities, non-integer linear relaxation solutions can be cut off.

Valid inequalities such as Gomory cuts are internally gener-
ated by state-of-the-art ILP solvers like CPLEX [17]. However, ILP
solvers cannot take advantage of the particular problem structure
known to the user. For the problem at hand, we identified a
number of problem-specific cutting planes, partly well-known for
substructures contained in (5).

4.1. Variable upper bounds [27]

Constraints (1d) and therefore, also (5a) implicitly ensure that a
TN can be assigned to a BS if and only if this BS is deployed. It is well-
known that (5) can be strengthened by adding these constraints
explicitly as

zst rxs 8ðs,tÞASnT: ð6Þ

4.2. Maximal clique inequalities [22]

A clique is a complete subgraph. Formally speaking, let
G¼ ðS,EÞ be a graph and UDS a subset of the vertex set. We call
U a clique if there exists an edge uvAE for all u,vAU. A clique is
maximal if it is not included in a larger clique.

Constraints (1c) describe an independent set polytope. Thus, we
can replace these constraints by all maximal clique inequalitiesX
sAU

xsr1 8U � S, U is a maximal clique in G¼ ðS,EÞ: ð7Þ

Though NP-complete, all maximal cliques can be computed by
the Bron–Kerbosch algorithm [5] without much effort.
4.3. Robust cover inequalities

Since constraints (1d) resemble a knapsack constraint for each BS
s, constraints (2) are closely related to the robust knapsack problem.
The general structure of such constraints can be written asX
iA I

aiyiþ max
JD I:9J9rG

X
iA J

âiyirbx, ð8Þ

where I denotes the set of items (TNs), ai the nominal knapsack
weight, âi its deviation, and b the knapsack capacity. For x¼1,
constraint (8) states a robust knapsack. Since x¼0 implies yi¼0 for
all iA I, every valid inequality for the robust knapsack problem can be
adapted to a valid inequality for (8) (and thus for (5)) by multiplying
its right hand side with x.

One type of cuts for the knapsack problem are the well-known
cover inequalities. They can be generalised to be applicable to the
robust knapsack problem as follows (cf. [18]). A set ðC [ JÞD I is a
robust cover if

9J9rG, 9C9Z0 and
X
iAC

aiþ
X
iA J

ðaiþ âiÞ4b:

For any robust cover C [ J, the robust cover inequality readsX
iAC[J

yirð9C [ J9�1Þx ð9Þ

and is valid for (8).
Cover inequalities can be strengthened by means of the

concept of extended covers; a first extension is presented in [18],
a stronger one in [6]. To extend a robust cover C [ J, we select an
item i=2C [ J whose nominal weight ai is greater than or equal to
the maximum nominal weight in C and whose peak weight aiþ âi

is greater than or equal to the maximum peak weight in J.
Together with this item, at most 9C [ J9�2 items of the robust
cover can be put in the knapsack at the same time. Hence,X
iAEðC,JÞ

yir ð9C [ J9�1Þx ð10Þ

is also valid, with EðC,JÞ defined by

EðC,JÞ :¼ ðC [ JÞ [ iA I : aiZmax
jAC

aj, aiþ âiZ max
jA J
ðajþ âjÞ

� �
: ð11Þ

Separation of robust cover inequalities: Since there exist (expo-
nentially) many robust cover inequalities, we cannot add all to (5)
in advance. Instead, we separate robust cover inequalities on the
fly. Given a non-integral LP solution ð ~y, ~xÞ, the separation problem
is formulated as the following auxiliary ILP [18]:

min
X
iA I

ð ~x� ~yiÞri ð12aÞ

s:t:
X
iA I

ðairiþ âiqiÞ4b ð12bÞ

X
iA I

qirG ð12cÞ

qirri 8iA I ð12dÞ

ri, qiAf0;1g 8iA I: ð12eÞ

The objective (12a) minimises the reduced costs. If the
optimal objective value is less than ~x, the robust cover C [ J defines
a violated inequality of type (9) with C :¼ fiA I : ri ¼ 1,qi ¼ 0g and
J :¼ fiA I : qi ¼ 1g. Hence, constraint (12b) guarantees that the items
in the cover violate the capacity constraint and constraint (12c)
ensure that at most G many items can be considered with their peak
demand. Finally, the peak demand can only be considered if the item
is included in the cover, see constraints (12d).
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The separation problem (12) is also a kind of knapsack problem,
thus, NP-hard. This is why we adapt the separation heuristic given in
[18] for robust cover inequalities, see Algorithm 1.

In Step 0 we sort the items according to the smallest ratios of
profit (12a) to weight (12b) and initialise the parameters v,V and
V̂ . At the end of the algorithm, v presents the objective value of
the separation problem, V the sum of the nominal weights (ai) of
all items in C [ J and V̂ presents the sum of the deviations (âi) of
the items in J. Then in Step 1, those items whose peak weights are
considered in the robust cover are consolidated in set J. As soon as
the knapsack capacity is exceeded, the algorithm stops. Other-
wise, the algorithm continues with Step 2. In this step, all
resulting items with the highest nominal weights are added to
the set C until the capacity is exceeded. Additionally, sets J and C

are reshuffled such that J contains the items with highest devia-
tions. When the capacity is exceeded, the algorithm stops.

After the stop of the algorithm at the end of Step 1 or Step 2,
the constructed robust cover C [ J is tested for possible strength-
ening by removing (too) early added items and afterwards it is
extended by means of (11).

Algorithm 1. Heuristic for separating robust cover inequalities
Input: weights ai, âi; current LP solution ~yi, ~x
Output: robust cover C [ J
Step 0:
 Set v¼ 0, V ¼ 0, V̂ ¼ 0, C ¼ |, J¼ |.
For all iA I, let ai ¼ ð ~x� ~yiÞ=ðaiþ âiÞ and

bi ¼ ð ~x� ~yiÞ=ai.

Step1:
 Let L(k) be the index of the kth smallest coefficient

in faigiA I .

for k¼1 to G do
J’J [ fLðkÞg
V’V þaLðkÞ
Table 1
V̂’V̂ þ âLðkÞ
Considered scenarios.
v’vþð ~x� ~yLðkÞÞ
Name Number of BSs Number of TNs

if V þ V̂ 4b and vo ~x then
STOP
s450_40a to s450_40j 40 450
end if

s450_50 50 450
end for

s450_60 60 450

s500_40 40 500

Step 2:
s500_50 50 500
Let L0ðkÞ be the index of the kth smallest coefficient

in fbigiA I\J .
s500_60 60 500
for k¼1 to 9I9�Gdo

s550_40 40 550
s550_50 50 550

V’V þaL0 ðkÞ
s550_60 60 550
if âL0 ðkÞ4miniA J âi then

s600_40 40 600
s600_50 50 600

j :¼ argmin

iA J

âi
s600_60 60 600
C’C [ fjg
J’J\fjg [ fL0ðkÞg
2500
V̂’V̂�âjþ âL0 ðkÞ
else
2000
C’C [ fL0ðkÞg
end if
1500

v’vþð ~x� ~yL0 ðkÞÞ
]

m

if V þ V̂ 4b and vo ~x then
[
STOP

1000
end if

end for
0 500 1000 1500 2000 2500 3000 3500
0

500

[m]

Fig. 1. BSs (denoted by blue crosses), TNs (denoted by black dots) and the conflict

graph for scenario s450_40a. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)
5. Computational study

In this section, we describe a computational study to reveal the
added value of the robust optimisation approach. We start with a
description of the considered scenarios followed by a discussion
of the performance of the proposed cuts. Afterwards, we analyse
the robust results regarding an alternative single objective for-
mulation for computing pareto optimal solutions. Finally, we
evaluate the robust solutions such that we can determine a good
choice for G and we compare the corresponding network designs
with conventional solutions.

5.1. The scenarios

The proposed model is tested for planning scenarios based on
signal propagation data for Munich, available at [10]. We con-
struct 21 different planning scenarios based on this data set,
which comprises 60 BS candidate sites. For all scenarios, we
randomly choose BSs from the 60 available and consider ran-
domly distributed TNs. Due to this randomness it is possible that
the solving performance of the created scenarios varies. To
demonstrate that these variations are limited, we create ten
scenarios with 40 randomly chosen BSs and 450 randomly
distributed TNs (denoted by s450_40a to s450_40j). To examine
the behaviour of our model for different numbers of BSs and TNs,
we vary these numbers creating 11 scenarios as depicted in
Table 1.

Signal prediction, which is needed for the computation of the
spectral efficiencies, is done by a cube oriented ray launching
algorithm [20]. Furthermore, two BSs are adjacent in the conflict
graph if and only if the distance between them is less than or
equal to 500 m. The resulting graph is exemplarily illustrated for
scenario s450_40a in Fig. 1.

For all 21 scenarios, we use the following parameters: bs¼10 MHz,
ps¼4000 W 8sAS (based on [11]) and emin ¼ 0:5 bps=Hz.

Since user data is not available due to data privacy limitations,
we compute the demand values wt and ŵt for each tAT by



Table 2
Profiles for TNs.

Service Regular (%) High (%) Bit rate (kbps)

Data [10,20] [30,40] [512,2000]

Web [20,40] [40,50] [128,512]

G. Claßen et al. / Computers & Operations Research 40 (2013) 80–9084
randomly generating user profiles from Table 2. We consider a
regular traffic demand scenario for the nominal demands wt .
Hence, a percentage for both data and web services is uniformly
drawn from the ‘‘regular [%]’’ column and multiplied by a bit rate,
uniformly drawn from the ‘‘bit rate [kbps]’’ column. The percen-
tages for the peak demands ŵt are drawn from the ‘‘high [%]’’
column and multiplied by another uniformly drawn bit rate. In
both cases, the remaining percentage is used for Voice-over-IP
(VoIP) with a bit rate of 64 kbps. We set wt to the minimum of the
two computed values and ŵt is set to the absolute value of the
difference of these two values. Thus, the minimum value for wt is

10% � 512 kbpsþ20% � 128 kbpsþ70% � 64 kbps¼ 121:6 kbps,

whereas the maximum of ŵt is

40% � 2000 kbpsþ50% � 512 kbpsþ10% � 64 kbps

�121:6 kbps¼ 940:8 kbps:

The solutions of optimisation model (5) depend on the choice
of the scaling parameter l in the objective function. Therefore, we
run tests for the following three values.
100
(i)
]
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l¼ 1000, i.e., four TNs can be lost before it becomes bene-
ficial to deploy an additional BS,
95

d 
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(ii)
90
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Fig. 2. Additional gap closed for the different types of cutting planes, averaged

over scenarios s450_40a to s450_40j. (a) Variable upper bounds. (b) Variable

upper bounds and maximal clique inequalities. (c) Separation of extended robust

cover inequalities. Note, different scale!.
Note that the judgements of the weighting of the values for l are
based on the value of the parameter ps. Hence, the choice for the
values of l seems to be rather arbitrary. This is why we discuss an
alternative formulation which gives the pareto optimal solutions
in Section 5.4.

All computations are performed with CPLEX 12.2 [17] on a
Linux machine with 2.93 GHz Intel Xeon X5570 processor, a
memory limit of 11 GB RAM and a general CPU time limit of
1 h. To obtain comparable results with/without the separation of
cutting planes, the number of used threads is fixed to one.

We compute the solutions for different G in decreasing order.
Since the primal bound of the problem with G¼ nþ1 is also an
upper bound for the problem with G¼ n, we use the primal
solutions found in the subsequent computations.

5.2. Cutting plane analysis

In all subsequent computations, we apply the cutting plane
approaches presented in Section 4. Therefore, we investigate the
performance of the cuts before evaluating our robust
optimisation model.

To analyse the cuts, we run tests in the root node since, e.g.,
the separation of robust cover inequalities is only performed in
the root node. We compute the additional gap closed which is
given by

DBcut�DBroot

PBbest�DBroot
,

where PBbest is the best known solution, DBroot the dual bound
computed in the root node without the application of any type of
cut (also no internal cuts of CPLEX) and DBcut is the dual bound
found in the root node when the studied cuts are applied. In the
case that PBbest�DBroot ¼ 0, the additional gap closed is set to 0%.
So the additional gap closed gives the percentage of gap between
the best known solution and the current dual bound that could be
closed when applying the cuts. Note that in the case we do not
separate inequalities, we only solve the LP relaxation of model (5),
if necessary adapted by (6) and/or (7). The optimal solution is
then denoted by DBroot or DBcut, respectively, since the optimal LP
solution is comparable with the dual bound found in the root
node of the ILP formulation.

We examined the variable upper bounds (6), the maximal
clique inequalities (7) and the separation of robust extended
cover inequalities (11) separately as well as in different combina-
tions. Fig. 2(a) displays the additional gap closed achieved by the
application of the variable upper bounds for the different values
of G and l. The displayed values are averaged over the scenarios
s450_40a to s450_40j. We can close the optimality gap by up to
96% (G¼ 0, l¼ 1000). For lower values of G, the closure of the
gap is higher than for GZ14. However, when G exceeds 25, the
gap closed increases again. For small and high values of G, the
problems are easier to solve than for a medium large value. This
fact will be further substantiated by the higher optimality gap (on
average) in Fig. 4 for medium large G s, see Section 5.3.

When applying only the maximal clique inequalities, we experi-
enced that this type of cutting plane on its own does not support the
solver in closing the optimality gap significantly. The maximum



Fig. 3. Primal (dashed lines) and dual bounds (solid lines) for lAf1000;2000,4000g and GAf0;1, . . . ,40g. (a) s450_40a. (b) s450_40f.
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additional gap closed (averaged over the scenarios s450_40a to
s450_40j) is 1.28%. Nevertheless, applying variable upper bounds
and maximal clique inequalities simultaneously, the gap can be
closed by up to 98% (G¼ 0, l¼ 2000), see Fig. 2(b). In all cases, the
gap could be closed more than by applying only the variable upper
bounds (ranging from 0.5% to 9.23% more). Due to this synergy
effect, also the maximal clique inequalities are a reasonable
approach to improve the computability of the robust model (5).

The gap closed, averaged over scenarios s450_40a to s450_40j,
for the separation of robust extended cover inequalities only is
presented in Fig. 2(c). For this type of cutting planes, the gap
could be closed by up to 43%. The courses of the curves are
(almost) the same for different values of l. This is the case since
the robust cover inequalities push the number of unsigned TNs
and together with the fact that the multi-objective parameter l
behaves as a scaling parameter for the root node computations
when applying the separation procedure. Only when applying all
three types of cutting planes, the gap could incidently be closed
by 100% (G¼ 0, l¼ 2000).

Since the presented cuts can significantly improve the solving
performance of the robust optimisation model (5), from now on
we apply the cuts in all computations.

5.3. The price of robustness

In this subsection, we analyse the solutions (primal and dual
bounds and the optimality gap) of the robust model (5) for the
scenarios described in Section 5.1, and for different values of G and l.

For two selected scenarios of s450_40a to s450_40j (s450_40a and
s450_40f), Fig. 3 shows for GAf0;1, . . . ,40g and lAf1000;2000,
4000g the best solution found (primal bound) and a lower bound on
the optimal solution value (dual bound), while for scenarios s450_50
to s600_60, Fig. 5 depicts these values only for selected values of G,
GAf0;5,10;15,20;25,30;35,40g. The plots for the remaining scenar-
ios can be found in the Appendix, see Fig. A1.

In about 75% of the cases for scenarios s450_40a to s450_40j
both bounds match, which means that the optimal solution is
found within the given time limit. We observe that the objective
values increase with increasing G (the course of the bounds is
similar, independent of l). This increase is the so-called price of

robustness, i.e., for larger values of G, the solution becomes more
conservative and at the same time more robust against devia-
tions. Also the optimality gap increases with increasing G, but for
half of the scenarios (s450_40a, s450_40b, s450_40c, s450_40f,
s450_40g) only until G becomes too large (say 25–30). If G
exceeds the maximum number of served TNs per BS in a scenario,
then the problem is easier to solve than an instance with a lower
G since all TNs can be considered at their peak demand. Thus, it
happens quite regularly that the instances at the lowest and
largest values for G are solved to optimality whereas the
instances with G in between show optimality gaps. To demon-
strate this more clearly, we take the smallest primal bound per
scenario per l as a basis and norm all other primal and dual
bounds to this value. Subtracting the normed dual bound from the
normed primal bound gives the normed optimality gap which is
then averaged over the scenarios, see Fig. 4. Since the behaviour
of the curves in this figure is similar to the optimality gaps that
can be seen in Figs. 5 and A1, the scenarios s450_40a to s450_40j
are comparable and we can arbitrarily choose one (except
s450_40a, see below) for the comparison with varying numbers
of BSs and TNs.

As just indicated, scenario s450_40a is a special case compared
to the other scenarios. For s450_40a, all 450 TNs can be covered
by the installed BSs while this is not possible in the other
scenarios due to the random positioning of TNs. Hence, the
multi-objective parameter l does not influence the objective
value and the bounds for all values of l coincide (see Fig. 3(a)).

The solution bounds behave as stepwise functions for all
scenarios. This is the case, since G can be increased to a certain



Fig. 5. Primal (dashed lines) and dual bounds (solid lines) for lAf1000;2000,4000g and GAf0;5,10;15,20;25,30;35,40g. (a) s450_40g, representative. (b). s450_50.

(c) s450_60. (d) s500_40. (e) s500_50. (f) s500_60. (g) s550_40. (h) s550_50. (i) s550_60. (j) s600_40. (k) s600_50. (l) s600_60.
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value, without changing the optimal solution, until the BSs cannot
serve all TNs anymore. Hence, more TNs are not covered anymore
and/or one more BS has to be deployed.
For the scenarios with increasing numbers of TNs and BSs
(s450_50 to s600_60), about 58% of the cases could be solved to
optimality within the given time limit. This number is lower than for
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Table 3

Numbers of installed BSs and not covered TNs for lAf1000;2000,4000g and

GAf0;5,10;20,40g.

G l¼ 1000 l¼ 2000 l¼ 4000

#BSs #TNs #BSs #TNs #BSs #TNs

0 9 14 11 9 13 6

5 11 9 11 9 13 6

10 12 8 13 6 13 6

20 13 7n 13 7n 14 6

40 13 8n 14 6 14 6
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scenarios s450_40a to s450_40j since a lower number of considered
values for G also decreases the number of possible primal bounds
that could be used in a solution. Obviously, scenarios with a higher
number of TNs (s550_40, s550_50, s600_40 and s600_50) are more
difficult to solve. Additionally, scenarios s550_60 (Fig. 5(i)) and
s600_60 (Fig. 5(l)) perform better than s550_40 (Fig. 5(g)) and
s600_40 (Fig. 5(j)) since it becomes easier to assign the same number
of TNs to a higher number of BS candidates. However, a higher
number of BSs does not necessarily improve the computability of the
scenario since more BSs candidates imply a higher number of
placement and assignment possibilities; the results for, e.g., s450_50
and s450_60 (Fig. 5(b) and (c)) are comparable.

5.4. Pareto optimal solutions

The computational results presented in the previous sections
depend on the choice of the scaling parameter l in the objective
function. To avoid this dependency, we propose the following
alternative robust formulation:

min
X
tAT

ut ð13aÞ

s:t:
X
sAS

xs ¼ K ð13bÞ

ð1bÞ; ð1cÞ; ð1eÞ

ð5aÞ; ð5bÞ; ð5cÞ:

This model minimises the number of not covered TNs for a
fixed number of deployed BSs. The number of deployed BSs is set
to K, see constraint (13b). The parameter K can range between
zero and the independent set number of the conflict graph, which
is the maximum number of BSs that can be installed without
being in conflict with each other.

By means of this model, we can compute the pareto optimal
solutions for different values of the robustness parameter G. Pareto
optimal in our context denotes the fact that we cannot deploy fewer
BSs and at the same time serve the same number of TNs.

We solve formulation (13) exemplarily for scenario s450_40g
with KAf0;1, . . . ,17g and GAf0;5,10;20,40g. The results are pre-
sented in Fig. 6. The independent set number of the conflict graph of
scenario s450_40g is 17, i.e., Kr17. Fig. 6(a) displays for every
number of installed BSs how many TNs cannot be covered by the
best solution found after one hour of CPU time (83% of the problems
are solved to optimality). Obviously, if we do not install any BS no
TN can be served and hence, the curves for each G start at 450.
However, already for K¼1, the numbers of not covered TNs vary for
different values of G. The larger the value of G, the fewer TNs can be
covered by the same number of BSs. The most significant values for
K are between 11 and 14, depicted in detail in Fig. 6(b). Starting
from 11, the curves begin to merge such that all curves are identical
for KZ14. Therefore, the highest reasonable value for K is 14.

For K¼17, eight TNs cannot be covered whereas for K¼16 this
number is only 6. Hence, the solutions for K¼17 are not pareto
optimal. This is the case since constraint (13b) is an equality
constraint. If the equality was replaced by a less than or equal
sign, the objective value for K would also be 6.

The corresponding solutions of model (5) are given in Table 3.
All numbers of not covered TNs, apart from the three numbers
marked by n, lie on the corresponding curves in Fig. 6(a). For the
three cases marked by n, either model (13) or model (5) could not
be solved to optimality within 1h time limit. The numbers in
Table 3 hence show that all results for the two problem formula-
tions are comparable and it is reasonable to consider the multi-
objective formulation.

5.5. Evaluation of robust planning

In Section 5.3, we have computed the solutions of the robust
formulation (5) for GAf0;1, . . . ,40g in the cases of scenarios
s450_40a to s450_40j. In this section, we evaluate these solutions
to determine a good choice for G (per scenario) for which the solution
of the robust formulation gives a reasonable network planning, where



Table 5
Best robust solutions compared to conventional solutions for P ¼ 5%.

Scenario Best G l¼ 1000 l¼ 2000 l¼ 4000

DBSs DTNs DBSs DTNs DBSs DTNs

s450_40a 14 1 �1 1 �1 0 0

s450_40b 13 1 �1 0 2 0 2

s450_40c 14 1 0 1 0 1 0

s450_40d 14 1 0 1 0 1 0

s450_40e 13 1 �1 1 �1 0 1

s450_40f 13 2 �3 1 0 1 0

s450_40g 14 1 �2 1 �1 0 0

s450_40h 13 2 �3 0 1 1 0

s450_40i 14 1 0 1 0 1 0

s450_40j 14 1 �1 0 1 0 0

Table 6
Best robust solutions compared to conventional solutions for P ¼ 1%.

Scenario Best G l¼ 1000 l¼ 2000 l¼ 4000

DBSs DTNs DBSs DTNs DBSs DTNs

s450_40a 20 1 �3 0 0 0 0

s450_40b 19 1 �2 0 1 �1 1

s450_40c 20 0 1 1 �1 0 0

s450_40d 20 0 3 1 0 1 0

s450_40e 19 1 �2 0 0 0 1

s450_40f 19 1 0 1 �1 0 0

s450_40g 20 0 1 1 �1 0 0

s450_40h 19 1 �2 0 1 1 �1

s450_40i 20 1 �2 1 �1 0 0

s450_40j 19 1 �2 0 0 0 0
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reasonable means being robust but not too conservative. Our evalua-
tion is based on the probability bounds given in [4]. The probability
that the capacity constraint (1d) for sAS is violated can be bounded
as follows if the demand values are modelled as independent and
symmetrically distributed random variables ~wt in ½wt�ŵt ,wtþŵt�.

P
X
tATs

~wt

est
zst 4bsxs

 !
rBðns,GÞ, ð14Þ

where

Bðns,GÞ ¼
1

2ns
ð1�psþbpscÞ

ns

bpsc

 !
þ

Xns

l ¼ bpscþ1

ns

l

� �2
4

3
5,

with ns ¼ 9Ts9 and ps ¼ ðGþnsÞ=2. In theory, this is the best bound
possible [4]. We compute the values Bðns,GÞ for each BS and G. We
study two cases: the probability Bðns,GÞ should either be lower than
P ¼ 5% or lower than P ¼ 1%. This value is to be determined by the
network operator based on the fact that the lower the value for P, the
better the network is secured against bad performance due to
demand fluctuations. Table 4 gives the minimum values, the values
averaged over the BSs and the maximum values of G for which the
probability Bðns,GÞ is lower than 5% or 1%, respectively.

In Table 4, we see that G has to be at least 6 (7) and at most 19
(26) if the capacity constraints (1d) should be fulfilled with
probability 95% (99%). The differences in G for scenarios
s450_40a to s450_40j are not severe. If G is set to the highest
value, the solution will be too conservative for most BSs and if the
lowest value is chosen, it will most likely happen that quite a
number of capacity constraints (1d) are not fulfilled with the
required probability. Thus, for the comparison of a robust solution
to conventional wireless network planning in the next subsection,
we set G to the averaged values.

5.6. Conventional wireless network planning

In this section, we compare the number of installed BSs and the
number of covered TNs in a robust solution and in the solution of
the conventional problem. The exact numbers of installed BSs and
covered TNs can be found in the Appendix in Table A1.

For the robust solution, we consider the robust problem defined
by the values of G given in the columns denoted by ‘‘avg’’ in Table 4
since for these values the capacity constraints (1d) are on average
fulfilled with probability 95% and 99%, respectively. Thus, these
values represent a reasonable choice for G.

By conventional wireless network planning we denote the
planning method, in which any uncertainties of parameters are
ignored; parameters are assumed to be static. However, to be able
to compensate, e.g., demand fluctuations, a network operator
should plan with values equal or close to the peak demand values
[21]. Thus, we run model (1) with wt ¼wtþŵt for all tAT for the
Table 4
Reasonable choices for G for different probability bounds.

Scenario P ¼ 5% P ¼ 1%

min avg max min avg max

s450_40a 8 14 18 11 20 24

s450_40b 6 13 17 8 19 23

s450_40c 7 14 19 10 20 26

s450_40d 8 14 18 10 20 25

s450_40e 7 13 18 9 19 25

s450_40f 6 13 17 7 19 24

s450_40g 6 14 18 7 20 25

s450_40h 6 13 18 7 19 24

s450_40i 8 14 19 10 20 26

s450_40j 7 14 19 9 19 26
conventional network planning. The optimal solution is found in
about 93% of the cases.

In Tables 5 and 6, we display the difference between installed BSs
in the robust solution and in the conventional solution (DBSs) as well
as the difference between the number of covered TNs in the
robust solution and in the conventional solution (DTNs) for
lAf1000;2000,4000g and PAf5%,1%g. A positive value in a column
denoted by ‘‘DBSs’’ means that in our robust solution less BSs than in
the conventional solution are deployed. Furthermore, a positive value
in a column denoted by ‘‘DTNs’’ means that our robust solution can
cover more TNs than the conventional solution, where a negative
value means that our robust solution loses some TNs compared to the
conventional solution. The robust solutions for P ¼ 1% are naturally
more conservative than for P ¼ 5%. Hence, for P ¼ 5% we can install
up to two BSs less than in the conventional planning, where for
P ¼ 1% we can install at most one BS less (saving 4000 W per fewer
installed BS). The number of installed BSs ranges from 12 to 15. For
both probabilities, we loose at most three TNs, which is less than 1%
of the total number of TNs, but only under the circumstance that
fewer BSs are deployed. The gains of the robust solutions decrease for
higher values of l. This is explained easily by the conservative choice
of, e.g., l¼ 4000. As stated in Section 5.1, l¼ 4000 means that it
becomes beneficial to deploy an additional BS if more than one TN
cannot be covered. Therefore, also the robust solutions for smaller
values of G are already quite conservative and cannot save as much
energy as the solutions for smaller values of l.

Taking the number of deployed BSs in the conventional solution as
a basis, we compute the percental energy savings averaged over
scenarios s450_40a to s450_40j in Table 7. Even for a quite small
number of deployed BSs (at most 15), our robust solution can save up
to 8.96% energy or 5.22% if the solution should be more conservative.
Note that these numbers strongly depend on the multi-objective
parameter l as well as on G, thus on the desired choice of
conservatism of the network operator. Due to the high energy savings
compared to the small number of BSs, we see a high potential for
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further energy savings in wireless networks of practical relevant sizes.
Snapshot simulations [9] with a binary decision for each TN (con-
sidered either at the nominal or at the peak demand) have suggested
comparable values of G (G¼16) for a robust planning which suffices
in practice and results in similar energy savings.
6. Concluding remarks

In this paper, we have introduced a robust optimisation model for
the energy-efficient planning of future wireless networks. By means
of the G-robustness approach, we have incorporated demand
Table 7
Percental energy savings for PAf1%,5%g averaged over scenarios s450_40a to

s450_40j.

P ¼ 5% P ¼ 1%

l¼ 1000 l¼ 2000 l¼ 4000 l¼ 1000 l¼ 2000 l¼ 4000

8.96% 5.11% 3.52% 5.22% 3.57% 0.67%
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Fig. A1. Primal (dashed lines) and dual bounds (solid lines) for lAf1000;2000,4000

(e) s450_40g. (f) s450_40h. (g) s450_40i. (h) s450_40j.
uncertainties. Network operators can assess the trade-off between
robustness and energy consumption, the so-called price of robustness,
by varying the robustness parameter and the l (or by pareto optimal
solutions). The case study illustrated a high potential for energy
savings (installing fewer BSs) by our robust solutions compared to
conventional wireless network planning. Furthermore, the computa-
tional results demonstrate that the cuts, applied to enhance the
computability, can actually improve the solution performance.
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Appendix A

See (Fig. A1) and (Table A1)
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g and GAf0;1, . . . ,40g. (a) s450_40b. (b) s450_40c. (c) s450_40d. (d) s450_40e.



Table A1

Number of deployed BSs and covered TNs for the best robust solutions for PAf1%,5%g and the conventional solutions, lAf1000;2000,4000g.

Scenario l¼ 1000 l¼ 2000 l¼ 4000

Rob., P ¼ 5% Rob., P ¼ 1% Convent. Rob., P ¼ 5% Rob., P ¼ 1% Convent. Rob., P ¼ 5% Rob., P ¼ 1% Convent.

BSs TNs BSs TNs BSs TNs BSs TNs BSs TNs BSs TNs BSs TNs BSs TNs BSs TNs

s450_40a 12 449 12 447 13 450 12 449 13 450 13 450 13 450 13 450 13 450

s450_40b 13 441 13 440 14 442 14 444 14 443 14 442 14 444 15 443 14 442

s450_40c 12 442 13 443 13 442 13 444 13 443 14 444 13 444 14 444 14 444

s450_40d 12 444 13 447 13 444 13 447 13 447 14 447 13 447 13 447 14 447

s450_40e 12 442 12 441 13 443 12 442 13 443 13 443 14 445 14 445 14 444

s450_40f 12 441 13 444 14 444 13 444 13 443 14 444 13 444 14 444 14 444

s450_40g 12 440 13 443 13 442 13 443 13 443 14 444 14 444 14 444 14 444

s450_40h 12 436 13 437 14 439 14 440 14 440 14 439 14 440 14 439 15 440

s450_40i 12 443 12 441 13 443 13 445 13 444 14 445 13 445 14 445 14 445

s450_40j 12 442 12 441 13 443 13 444 13 443 13 443 15 446 15 446 15 446
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