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Abstract—In this work, a discrete-time stationary Rayleigh
flat-fading channel with unknown channel state information at
transmitter and receiver side is studied. The law of the channel is
presumed to be known to the receiver. For independent identically
distributed (i.i.d.) zero-mean proper Gaussian input distributions
the achievable rate is investigated. The main contribution of
this paper is the derivation of two new upper bounds on the
achievable rate with Gaussian input symbols. One of these bounds
is based on the one-step channel prediction error variance but
is not restricted to peak power constrained input symbols like
known bounds. Moreover, it is shown that Gaussian inputs yield
the same pre-log as the peak power constrained capacity. The
derived bounds are compared with a known lower bound on
the capacity given by Deng et al. and with bounds on the peak
power constrained capacity given by Sethuraman et al.. Finally,
the achievable rate with i.i.d. Gaussian input symbols is compared
to the achievable rate using a coherent detection in combination
with a solely pilot based channel estimation.

Index Terms—Channel capacity, fading channels, Gaussian
distributions, information rates, noncoherent, Rayleigh, time-
selective.

I. INTRODUCTION

IN this paper, we consider a stationary Rayleigh flat-fading

channel with temporal correlation. We assume that the

channel state information is unknown to the transmitter and

the receiver, while the receiver is aware of the channel law.

The capacity of this scenario is particularly important, as

it applies to many realistic mobile communication systems.

In order to acquire channel state information, the temporal

correlation of the channel can be exploited by the system,

e.g., by inserting training sequences at transmit side. While
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these training sequences can be understood as a specific type

of code [1], we are interested in the achievable rate on this

channel irrespective of the use of training sequences.

The capacity of fading channels where the channel state

information is unknown, i.e., sometimes referred to as nonco-

herent capacity, has received a lot of attention in the recent

literature. E.g., [2] considers a block fading channel model,

where the channel is assumed to be constant over a block of

N symbols and changes independently from block to block.

This model is non-stationary and, therefore, different from the

one we consider in the present work. On the other hand, in [3]

and [4] the achievable rate of time-continuous fading channels

has been examined under the assumption of the use of training

sequences for channel tracking and a coherent detection based

on the acquired channel estimate. Furthermore, in [1] the

asymptotic high SNR capacity of a stationary Gaussian fading

channel has been investigated, whereas in [5] an approximate

behavior of the capacity for different SNR regimes has been

considered. In addition, in [6] and [7] bounds on the capacity

for temporally correlated Rayleigh fading channels with a peak

power constraint have been derived with specific emphasis

on the low SNR regime. Furthermore, the case of frequency

selective stationary fading channels has been discussed, e.g.,

in [8] and [9].

The main goal of the present work is the investigation of the

achievable rate with independent identically distributed (i.i.d.)

zero-mean proper Gaussian input symbols — in the following

referred to as i.i.d. Gaussian — on noncoherent stationary

discrete-time Rayleigh flat-fading channels. The optimal input

distribution in the noncoherent case is not Gaussian but

becomes often peaky, which makes it impractical for real

system designs. Although Gaussian inputs are suboptimal,

they are of interest since they serve well to upper-bound the

achievable rate of practical modulation and coding schemes in

the coherent case [10]. In [11] the achievable rate with i.i.d.

Gaussian inputs has been studied for the block fading channel.

Furthermore, in [12] bounds on the mutual information with

Gaussian input distributions have been derived for a Gauss-

Markov fading channel, whose PSD has an unbounded sup-

port. The results in [12] indicate that at moderate SNR and/or

slow fading, Gaussian inputs still work well.

In the present work we study also the achievable rate for

a noncoherent discrete-time stationary Rayleigh flat-fading

channel with i.i.d. Gaussian input symbols. In contrast to [12]

we assume that the fading process is bandlimited, i.e., the

power spectral density (PSD) of the fading process has a nor-

malized maximum Doppler frequency fd < 0.5 (nonregular
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fading [13]), as it, e.g., corresponds to the widely used Jakes’

model [14].

The paper is structured as follows. In Section II, we

introduce the channel model. In Section III, we present the

first new upper bound on the achievable rate with Gaussian

input symbols. The derivation is based on a new lower bound

on the conditional output entropy rate h′(y|x). The lower

bound on h′(y|x) is not based on a peak power constraint

and therefor applies for Gaussian input symbols. Together

with a known lower bound on the achievable rate with i.i.d.

Gaussian input symbols given in [15] we obtain a set of bounds

which is tight in the sense that the difference is bounded by

(1+µ({Sh(f) > 0}))γ [nat/channel use] for all SNRs, where

γ ≈ 0.57721 is the Euler constant, Sh(f) is the normalized

PSD of the channel fading process, and µ(·) is the Lebesgue

measure on [− 1
2 ,

1
2 ]. In addition, we show that the asymptotic

high SNR slope (pre-log) of the achievable rate for Gaussian

inputs is given by 1−µ({Sh(f) > 0}). This is the same high

SNR behavior as it has been observed for the peak power

constrained capacity in [1]. Moreover, we compare the upper

bound on the achievable rate with i.i.d. Gaussian input symbols

to the upper bound on the peak power constrained capacity

given in [6].

In Section IV, we present the other main result of this paper.

We derive an upper bound on the achievable rate for i.i.d.

symbols which is based on the one-step channel prediction

error variance. This approach is already known for the peak

power constrained capacity [1]. Our derivation makes no use

of a peak power constraint and, thus, applies for Gaussian

input symbols. However, due to the restriction to i.i.d. input

symbols we only get an upper bound on the achievable rate

and not on the capacity. We evaluate this upper bound, on the

one hand, for Gaussian input symbols and, on the other hand

for peak power constrained input symbols.

In Section V, we compare the achievable rate with i.i.d.

Gaussian inputs to the achievable rate with synchronized

detection, which is of practical interest. Here, synchronized

detection means that the channel is estimated solely based on

pilot symbols and then, in a second separate step, the channel

estimate is used for coherent detection [3], [16, Ch. 4.3.1].

Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider an ergodic discrete-time jointly proper

Gaussian [17] flat-fading channel, whose output at time k is

given by

yk = hk · xk + nk (1)

where xk ∈ C is the complex-valued channel input, hk ∈ C

represents the channel fading coefficient, and nk ∈ C is

additive white Gaussian noise. The processes {hk}, {xk},
and {nk} are assumed to be mutually independent.

We assume that the noise {nk} is a sequence of i.i.d.

proper Gaussian random variables of zero-mean and variance

σ2
n. The stationary channel fading process {hk} is zero-mean

jointly proper Gaussian with variance σ2
h and with the

autocorrelation function

rh(l) = E[hk+l · h∗
k]. (2)

The normalized PSD of the channel fading process is

defined by

Sh(f) =

∞
∑

l=−∞

rh(l)e
−j2πlf , |f | < 0.5 (3)

where j =
√
−1. Here, the frequency f is normalized with

respect to the symbol duration. Although Sh(f) is normalized,

we refer to it as PSD for simplification. We assume that

the PSD exists. For a jointly proper Gaussian process, the

existence of the PSD implies ergodicity [18]. As the channel

fading process {hk} is assumed to be stationary, Sh(f) is

real-valued. Because of the limitation of the velocity of the

transmitter, the receiver, and of objects in the environment, the

spread of the PSD is limited, and we assume it to be supported

within the interval [−fd, fd], with 0 < fd < 0.5, i.e.,

Sh(f) = 0 for f /∈ [−fd, fd]. The parameter fd corresponds

to the normalized maximum Doppler shift and, thus, indicates

the dynamics of the channel. To ensure ergodicity, we exclude

the case fd = 0. Following the definition given in [13], this

fading channel is sometimes referred to as nonregular.

Typical fading channels, as they are observed in mobile

communication environments, are characterized by relatively

small normalized Doppler frequencies fd in the regime of

fd ≪ 0.1. Thus, the restriction to channels with fd < 0.5,
i.e., nonregular fading, in the present work is reasonable.

The average SNR is given by

ρ =
σ2
xσ

2
h

σ2
n

(4)

where σ2
x is the maximum average power of the input symbols.

Note that the symbol rate discrete-time model given in

(1) has some limitations. With respect to the underlying

continuous-time model symbol rate sampling at the receiver

does not yield a sufficient statistic. The reason is that the

multiplication of the input signal and the fading process in

time domain yields a broadening of the PSD of the useful

signal components at the receiver to a normalized bandwidth

of at least 1+ 2fd. See [16, Ch. 4.2] for a detailed discussion

regarding the generation of a sufficient statistic. However, as

typical systems usually apply symbol rate sampling at the

output of the matched filter the symbol rate model is of

practical relevance.

Moreover, note that the ergodicity of the channel fading

process assures the existence of a coding theorem such that

the information theoretic capacity and the operational capacity

coincide.

Further on we use the following matrix-vector notation of

the system model:

y = Xh+ n (5)

where the vector h is given by h = [h1, . . . , hN ]T . The vectors
y and n are defined analogously. The matrix X is diagonal

and defined as X = diag(x) with x = [x1, . . . , xN ]T . Here the
diag(·) operator generates a diagonal matrix whose diagonal
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elements are given by the argument vector. The quantity N is

the number of considered symbols. Later on, we investigate

the case of N → ∞ to evaluate the achievable rate.

Using this vector notation, we express the temporal corre-

lation of the fading process by the correlation matrix

Rh = E[hhH ] (6)

which has a Hermitian Toeplitz structure.

III. THE ACHIEVABLE RATE WITH GAUSSIAN INPUTS

The main focus of the present paper is the discussion of the

achievable rate with Gaussian inputs. In this regard, we derive

a new upper bound on the achievable rate

I ′(y;x) = lim
N→∞

1

N
I(y;x) (7)

which can be applied to arbitrary exchangeable input distri-

butions p(x) with a maximum average power σ2
x, i.e., to all

distributions in the set

Pex =
{

p(x)
∣

∣

∣x ∈ C
N , p(x1, . . . , xN ) = p(xπ(1), . . . , xπ(N))

∀π ∈ S(N), E[|xk|2] ≤ σ2
x ∀k

}

(8)

where S(N) is the group of permutations of {1, . . . , N}. Later
on, this bound is given for the special case of zero-mean i.i.d.

Gaussian input symbols which are included in the set Pex.

A. Coherent Mutual Information Rate

The mutual information rate in case the channel is known

at the receiver I ′(y;x|h) — the coherent case — is an upper

bound on I ′(y;x) as [19]

I ′(y;x) = I ′(y;x|h) − I ′(x;h|y). (9)

Here, I ′(x;h|y) is the penalty due to the channel uncertainty.

For (9) the independency of x and h has been used.

The coherent mutual information rate I ′(y;x|h) is maxi-

mized by i.i.d. zero-mean proper Gaussian inputs yielding1

I ′(y;x|h) = Ehk

[

log

(

1 + ρ
|hk|2
σ2
h

)]

=

∫ ∞

0

log (1 + ρz) e−zdz

= −e1/ρEi(−1/ρ) (10)

with the exponential integral Ei(x) =
∫ x

−∞
et

t dt. Note, the
capacity of the coherent channel is independent of the temporal

correlation of the channel.

B. Upper Bound on the Achievable Rate for Input Symbols

with an Exchangeable Distribution

The mutual information rate can be expressed by

I ′(y;x) = h′(y) − h′(y|x) (11)

with the differential entropy rate h′(·) = limN→∞
1
N h(·)

where h(·) is the differential entropy.

1All logarithms in this paper are to the base e and, unless stated otherwise,
all rates are in nat.

1) Upper Bound on h′(y): As the entropy h(y) of a zero-

mean complex random vector is upper-bounded by the entropy

of a proper Gaussian random vector with the same covariance

matrix [17], it follows that

h′(y) ≤ log
(

πe
(

σ2
xσ

2
h + σ2

n

))

(12)

where we have additionally used Hadamard’s inequality.

2) Lower Bound on h′(y|x): As the probability density of

y conditioned on x is zero-mean proper Gaussian, the entropy

h(y|x) is given by

h(y|x) = Ex

[

log
(

(πe)N det(Ry|x)
)]

(13)

with

Ry|x = Eh,n

[

yyH
∣

∣x
]

= XRhX
H + σ2

nIN (14)

where IN is the identity matrix of size N × N . Substituting

(14) into (13) yields

h(y|x) = Ex

[

log det
(

πe
(

XHXRh + σ2
nIN

))]

= Ez

[

log det
(

πe
(

ZUHΛhU+ σ2
nIN

))]

≥ Ez

[

log det
(

πe
(

ΛhZ+ σ2
nIN

))]

(15)

where we several times apply the relation det(AB + I) =
det(BA + I) for A and B being matrices of appropriate

size [20, Theorem 1.3.20]. Moreover, Z = XHX where

Z = diag(z) is a diagonal matrix with the elements [z]k =
zk = |xk|2. In addition, we have substituted Rh by its spectral

decomposition

Rh = UHΛhU (16)

where U is unitary and Λh = diag([λ
(N)
1 , . . . , λ

(N)
N ]) is

diagonal containing the eigenvalues λ
(N)
k of Rh. Here the

superscript (N) corresponds to the size of the corresponding

matrix Rh.

It remains to proof the inequality in (15) which is equivalent

to

Ez

[

log det
(

UZUH + σ2
nΛ

−1
h

)]

≥ Ez

[

log det
(

Z+ σ2
nΛ

−1
h

)]

(17)

Let

F (z) = − log det
(

UZUH + σ2
nΛ

−1
h

)

(18)

with z ∈ [0,∞)N . First, we proof that F (z) is L-superadditive.
A function F : [0,∞)N → R is called L-superadditive if

F (z+ hei + kej)− F (z + hei)− F (z+ kej) + F (z) ≥ 0

∀z ∈ [0,∞)N , ∀1 ≤ i < j ≤ N, ∀h, k ∈ (0,∞) (19)

with ei and ej being the i-th and j-th unit vector in R
N , see

[21, p. 213 Def. C.2], [22, p. 58].

An equivalent condition for L-superadditivity is the follow-

ing. For all z ∈ [0,∞)N , 1 ≤ i < j ≤ N and h ∈ (0,∞) the
function

[0,∞) ∋ k → F (z+ hei + kej)− F (z+ kej) (20)

is monotonically increasing.
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Let

A(k) = UZUH + σ2
nΛ

−1
h + kuju

H
j (21)

with uj the j-th column vector of U such that

UZUH =

N
∑

l=1

zlulu
H
l . (22)

For k ≥ 0 it holds that

F (z+ hei + kej)− F (z+ kej)

= − log det
(

A(k) + huiu
H
i

)

+ log det (A(k))

= − log
(

1 + huH
i A−1(k)ui

)

(23)

where for (23) we have used

det
(

A(k) + huiu
H
i

)

= det (A(k))
(

1 + huH
i A−1(k)ui

)

.
(24)

Obviously, [0,∞) ∋ k → A(k) is monotonically increasing

in the sense of the Loewner partial ordering of Hermitian

matrices. AsA(k) is positive definite for all k ≥ 0 this implies

that [0,∞) ∋ k → A−1(k) is monotonically decreasing in

the sense of the Loewner partial ordering [21, p. 672 E.3.b.].

Hence,

[0,∞) ∋ k → F (z + hei + kej)− F (z+ kej) (25)

is monotonically increasing.

Using [22, Corollary 3, Part A] yields the following

inequality

Ez

[

log det
(

UZUH + σ2
nΛ

−1
h

)]

≥ Ez

[

log det
(

Uz1INUH + σ2
nΛ

−1
h

)]

= Ez

[

log det
(

z1IN + σ2
nΛ

−1
h

)]

=

N
∑

k=1

Ez

[

log

(

z1 +
σ2
n

λ
(N)
k

)]

= Ez

[

log det
(

Z+ σ2
nΛ

−1
h

)]

(26)

where (26) follows from the fact that the diagonal elements

of Z are exchangeable due to the exchangeability of the

elements of x, see (8). Thus, (17) and, hence, the inequality

in (15) is proven.

With (15) the differential entropy rate h′(y|x) is lower-

bounded by

h′(y|x) ≥ lim
N→∞

1

N

N
∑

k=1

Ez log
(

πe
(

λ
(N)
k zk + σ2

n

))

= lim
N→∞

1

N

N
∑

k=1

Ez1 log
(

πe
(

λ
(N)
k z1 + σ2

n

))

(27)

=

∫ 1
2

− 1
2

E
[

log
(

πe
(

|x1|2Sh(f) + σ2
n

))]

df (28)

where (27) results as z1, . . . , zN are exchangeable. Moreover,

(28) follows by Szegö’s theorem on the asymptotic eigenvalue

distribution of Hermitian Toeplitz matrices [23, pp. 64-65],

[24]. This may be seen as follows. Let

g : λ
(N)
k → Ez1

[

log
(

πe
(

λ
(N)
k z1 + σ2

n

))]

. (29)

The function g is continuous on the finite intervalm ≤ λ
(N)
k ≤

M , where m and M are the essential lower and upper bound

of Sh(f), so that Szegö’s theorem is applicable. The continuity

of g follows from the fact that Ez1 [log(πe(λ
(N)
k z1+σ2

n))] is a

continuous function of the argument λ
(N)
k . This may be seen

by applying Lebesgue’s dominated convergence theorem [25,

Theorem 1.34] as
∣

∣

∣log
(

πe
(

λ
(N)
k z1 + σ2

n

))

p(z1)
∣

∣

∣ ≤ u(z1) (30)

for the integrable function u(z1) = | log(πeσ2
n)|p(z1) +

z1
M
σ2
n
p(z1).

3) Upper Bound on the Achievable Rate: Using (11), (12),

and (28) we are now able to state the following theorem:

Theorem 1. For all exchangeable input distributions con-

tained in the set Pex in (8) the achievable rate is upper-

bounded by

I ′(y;x) ≤ log (ρ+ 1)−
∫ 1

2

− 1
2

E

[

log

(

ρ
|x1|2
σ2
x

Sh(f)

σ2
h

+ 1

)]

df

(31)

where ρ is the average SNR defined in (4).

In particular, for i.i.d. zero-mean proper Gaussian input

symbols we obtain:

Lemma 1. For i.i.d. zero-mean proper Gaussian input symbols

and SNR ρ the achievable rate is upper-bounded by

I ′(y;x)

≤ log (ρ+ 1)−
∫ 1

2

f=− 1
2

∫ ∞

z=0

log

(

ρz
Sh(f)

σ2
h

+ 1

)

e−zdzdf

= I ′
U (y;x). (32)

As the mutual information rate in case of perfect channel

state information at the receiver I ′(y;x|h) in (10) always

upper-bounds the mutual information rate in the absence of

channel state information, we can modify the upper bound in

(32) as follows:

I ′
Umod

(y;x) = min{I ′
U (y;x), I ′(y;x|h)}. (33)

C. Lower Bound on the Achievable Rate with I.I.D. Gaussian

Input Symbols [15]

In [15] the following lower bound on the capacity is given,

which is achievable with i.i.d. Gaussian input symbols

I ′(y;x)

≥ I ′(y;x|h) −
∫ 1

2

− 1
2

log

(

ρ
Sh(f)

σ2
h

+ 1

)

df

=

∫ ∞

0

log (ρz + 1) e−zdz −
∫ 1

2

− 1
2

log

(

ρ
Sh(f)

σ2
h

+ 1

)

df

= I ′
L(y;x). (34)

The lower bound corresponds to the mutual information rate in

case of perfect channel knowledge at the receiver I ′(y;x|h)
reduced by a term which accounts for the channel uncertainty.
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Fig. 1. Upper and lower bound on the achievable rate with i.i.d. Gaussian
input symbols on a Rayleigh flat-fading channel with a rectangular Sh(f) in
bits per channel use (cu).

For i.i.d. Gaussian input symbols I ′(y;x|h) corresponds to

the coherent capacity given in (10).

As the mutual information rate is nonnegative, we modify

the lower bound in (34) as follows:

I ′
Lmod

(y;x) = max{I ′
L(y;x), 0}. (35)

D. Numerical Evaluation

Fig. 1 shows the upper bound (33) and the lower bound

(35) on the achievable rate with i.i.d. Gaussian input symbols

for a rectangular PSD Sh(f) given by

Sh(f)
∣

∣

Rect
=

{

σ2
h

2fd
for |f | ≤ fd

0 for fd < |f | ≤ 0.5
. (36)

The achievable rate strongly decreases with increasing channel

dynamics fd. Moreover, the gap between the upper and the

lower bound increases with the SNR.

E. Tightness of Bounds

The difference between the upper bound and the lower

bound on the achievable rate with Gaussian input symbols

in (32) and (34) is given by

∆I′(y;x) = I ′
U (y;x) − I ′

L(y;x)

= log(ρ+ 1)−
∫ ∞

0

log(ρz + 1)e−zdz

+

∫ 1
2

f=− 1
2

[

log

(

ρ
Sh(f)

σ2
h

+ 1

)

−
∫ ∞

z=0

log

(

ρ
Sh(f)

σ2
h

z + 1

)

e−zdz

]

df. (37)

We first evaluate the difference of the first two terms in (37)

given by

∆1 = log(ρ+ 1)−
∫ ∞

0

log(ρz + 1)e−zdz. (38)

For ρ → 0 the difference ∆1 converges to zero, while

limρ→∞ ∆1 = γ ≈ 0.57721 [nat/cu], see [26], where γ is the

Euler constant. Moreover, ∆1 monotonically increases with ρ
as2

∂∆1

∂ρ
=

1

1 + ρ
−
∫ ∞

0

z

1 + ρz
e−zdz (39)

≥ 0 (40)

where for (40) we have used that z
1+ρz is concave in z and,

thus, we can apply Jensen’s inequality. Thus, ∆1 is bounded

by 0 ≤ ∆1 ≤ γ.

Lets name the term with the integral over f in (37) ∆2. As

its integrand is structurally similar to ∆1 (substitute ρSh(f)
σ2
h

by ρ), it can be shown analogously to ∆1 that whenever

Sh(f) > 0 this integrand is bounded between 0 and γ.
For Sh(f) = 0 the integrand is zero. Thus, it follows

that 0 ≤ ∆2 ≤ γµ({Sh(f) > 0}) [nat/cu] where µ(·) is the

Lebesgue measure on the interval [− 1
2 ,

1
2 ]. Note that we

use here the Lebesgue measure to allow for an arbitrary

PSD Sh(f) as defined in (3). In case Sh(f) is supported

on [−fd, fd], i.e., Sh(f) > 0 ∀|f | ≤ fd, it holds that

µ({Sh(f) > 0}) = 2fd.

Hence, ∆I′(y;x) is bounded by

0 ≤ ∆I′(y;x) ≤ γ(1 + µ({Sh(f) > 0})) [nat/cu] (41)

where the lower limit is achieved for ρ → 0 and

lim
ρ→∞

∆I′(y;x) = γ(1 + µ({Sh(f) > 0})). (42)

For asymptotically small channel dynamics the lower bound

in (34) converges to the mutual information rate in case

of perfect channel knowledge (10). This corresponds to the

physical interpretation that an arbitrarily slowly changing

channel can be estimated arbitrarily well and, thus, the penalty

term I ′(x;h|y) in (9) approaches zero.

F. The Asymptotic High SNR Behavior

The lower bound on the achievable rate with i.i.d. Gaussian

input symbols given in (34) is characterized by the following

high SNR slope3, which is often named pre-log

lim
ρ→∞

∂I ′
L(y;x)

∂ log(ρ)

= lim
ρ→∞





∫ ∞

0

ρz

ρz + 1
e−zdz −

∫ 1
2

− 1
2

Sh(f)
σ2
h

ρ

Sh(f)
σ2
h

ρ+ 1
df



 (43)

= 1− µ({Sh(f) > 0}) (44)

= lim
ρ→∞

∂I ′(y;x)

∂ log(ρ)
(45)

2Note that the change of the order of differentiation and integration required
in (39) is possible as can be shown using Lebesgue’s dominated convergence
theorem [25, Theorem 1.34].

3When using the term high SNR slope we refer to the high SNR limit of
the derivative of the achievable rate (bound) with respect to the logarithm of
the SNR.
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where µ(·) again is the Lebesgue measure on [− 1
2 ,

1
2 ].

4 As

the gap between the upper and the lower bound ∆I′(y;x)

in (37) converges to a constant for high SNR, cf. (42), the

slope of the actual achievable rate I ′(y;x) is also given by

1− µ({Sh(f) > 0}) yielding (45). This corresponds to the

pre-log of the peak power constrained capacity for nonregular

fading [1]. In case Sh(f) is supported on the interval [−fd, fd]
the pre-log of the achievable rate is, thus, given by 1 − 2fd,
clearly showing the degradation with increasing channel dy-

namics.

G. Comparison to the Upper Bound on the Peak Power

Constrained Capacity in [6]

In [6, Prop. 2.2] the following upper bound for the peak

power constrained capacity with 1
NE

[

xHx
]

≤ σ2
x and

|xk|2 ≤ Ppeak is given

Cpeak ≤ log (αoptρ+ 1)−
∫ 1

2

− 1
2

αopt

β
log

(

ρβ

σ2
h

Sh(f) + 1

)

df

(46)

with

αopt = min







1,

(

1

β

∫ 1
2

− 1
2

log

(

ρβ

σ2
h

Sh(f) + 1

)

df

)−1

− 1

ρ







(47)

and with the nominal peak-to-average power ratio β =
Ppeak

σ2
x
.

Note that in case of a peak power constraint it is not necessar-

ily optimal to use the maximum average transmit power σ2
x.

Thus, in case of a peak power constraint the SNR ρ is actually

a nominal average SNR.

Applying the peak power constraint to Theorem 1 yields

the same upper bound as in (46) in terms of the expression.

However, the derivation of Theorem 1 requires the restriction

to input symbols with an exchangeable distribution which is

not required in [6, Prop. 2.2].

The high SNR pre-log of (46) is given by

1− µ({Sh(f) > 0})/β, which is higher than the capacity

pre-log of 1 − µ({Sh(f) > 0}), showing that for large peak-

to-average power ratios β and high SNRs the upper bound

on the peak power constrained capacity becomes loose. This

intuitively demonstrates the relevance of the upper bound on

the achievable rate with i.i.d. Gaussian input symbols.

IV. ALTERNATIVE UPPER BOUND ON THE ACHIEVABLE

RATE WITH I.I.D. INPUT SYMBOLS BASED ON THE

ONE-STEP CHANNEL PREDICTION ERROR VARIANCE

In the present section, we give further a new upper bound

on the achievable rate with i.i.d. input symbols which is based

on the channel prediction error variance and is like the upper

bound given in Section III-B not restricted to peak power

constrained input symbols. Differently, for the derivation of

4Using Lebesgue’s dominated convergence theorem [25, Theorem 1.34]
one can show that the change of the order of differentiation and integration
required to get equality (43) and the change of the order of the limit and the
integration required to derive equality (44) is allowed.

the channel prediction based capacity bounds in [1] the peak

power constraint has been required for technical reasons.

In the first part of the following derivation, we only restrict

to i.i.d. input symbols with a maximum average power con-

straint, i.e., the input distribution is contained in the set

Pi.i.d. =

{

p(x)

∣

∣

∣

∣

x ∈ C
N , p(x) =

N
∏

i=1

p(xi),

p(xi) = p(xj) ∀i, j, E[|xk|2] ≤ σ2
x ∀k

}

. (48)

A. An Upper Bound based on the Channel Prediction Error

Variance

Corresponding to Section III-B, we express I ′(y;x) based

on the separation in (11).

1) Upper Bound on h′(y): For the term h′(y) we apply

the upper bound given in (12), i.e.

h′(y) ≤ log
(

πe
(

ασ2
xσ

2
h + σ2

n

))

(49)

where we additionally introduce the factor α ∈ [0, 1], enabling
to choose average transmit powers smaller than the maximum

average transmit power σ2
x.

2) The Entropy Rate h′(y|x): Our aim is to express h′(y|x)
based on the channel prediction error variance. As the fading

channel is stationary and ergodic we get for i.i.d. input symbols

h′(y|x) = lim
N→∞

1

N
h(y|x)

= lim
N→∞

1

N

N
∑

k=1

h(yk|x,yk−1
1 ) (50)

= lim
N→∞

1

N

N
∑

k=1

h(yk|xk
1 ,y

k−1
1 ) (51)

= lim
N→∞

h(yN |xN
1 ,yN−1

1 ) (52)

where the vector yN−1
1 contains all channel output symbols

from the time instant 1 to the time instant N − 1. Here, for
(50) we have used the chain rule for differential entropy, (51)

is based on the fact that yk conditioned on yk−1
1 and xk

1 is

independent of the symbols xN
k+1 due to the independency

of the transmit symbols. For equality (52) we have used the

Cesáro mean based on the convergence of h(yk|xk
1 ,y

k−1
1 ) to

a fixed value for k → ∞ due to the stationarity of the channel

fading process and the assumption on independent transmit

symbols, see [27, Theorem 4.2.3].

As p(y|x) is proper Gaussian, yN conditioned on xN
1 ,yN−1

1

is proper Gaussian and, thus, fully characterized by its condi-

tional mean and its conditional variance given by

E
[

yN |xN
1 ,yN−1

1

]

= E
[

xNhN + nN |xN
1 ,yN−1

1

]

= xNE
[

hN |xN−1
1 ,yN−1

1

]

= xN ĥN (53)
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var
[

yN |xN
1 ,yN−1

1

]

= E
[

∣

∣yN − E
[

yN |xN
1 ,yN−1

1

]∣

∣

2
∣

∣

∣x
N
1 ,yN−1

1

]

= E

[

∣

∣

∣xN (hN − ĥN ) + nN

∣

∣

∣

2 ∣
∣

∣x
N
1 ,yN−1

1

]

= |xN |2σ2
epred(x

N−1
1 ) + σ2

n (54)

where ĥN is the MMSE estimate of hN based on the channel

output observations at all previous time instances and the

channel input symbols at these time instances. As both, the

noise as well as the fading process, are jointly proper Gaussian,

the MMSE estimate is equivalent to the linear minimum mean

squared error (LMMSE). Furthermore, σ2
epred(x

N−1
1 ) is the

prediction error variance of the MMSE estimate ĥN given by

σ2
epred(x

N−1
1 ) = E

[

∣

∣

∣hN − ĥN

∣

∣

∣

2 ∣
∣

∣x
N−1
1 ,yN−1

1

]

= E
[

|eN |2
∣

∣

∣x
N−1
1 ,yN−1

1

]

= E
[

|eN |2
∣

∣

∣x
N−1
1

]

(55)

with the prediction error eN = hN − ĥN . For (55) we

have used the fact that the zero-mean estimation error eN
is orthogonal to and, thus, independent of the observations

yN−1
1 as both are proper Gaussian. However, the prediction

error variance depends on the input symbols xN−1
1 , which is

indicated by writing σ2
epred(x

N−1
1 ).

Based on the channel prediction error variance, we can

rewrite the entropy h(yN |xN
1 ,yN−1

1 ) as

h(yN |xN
1 ,yN−1

1 ) = Ex

[

log
(

πe var
[

yN |xN
1 ,yN−1

1

])]

= Ex

[

log
(

πe
(

σ2
n + σ2

epred(x
N−1
1 )|xN |2

))]

. (56)

With (52) and (56), we get for i.i.d. input symbols

h′(y|x) = Exk

[

E
x
k−1
−∞

[

log
(

πe
(

σ2
n + σ2

epred,∞(xk−1
−∞)|xk|2

))]]

(57)

where σ2
epred,∞(xk−1

−∞) denotes the prediction error variance in

(55) for an infinite number of channel observations in the past.

Note that we have switched the notation and now predict at

the time instant k instead of predicting at the time instant N .

This is possible, as the channel fading process is stationary,

the input symbols are assumed to be i.i.d., and as we consider

an infinitely long past.

3) Upper Bound on the Achievable Rate: With (11), (49),

and (57), we can give the following upper bound on the

achievable rate with i.i.d. input symbols:

I ′(y;x) ≤ log (αρ+ 1)

− Exk

[

E
x
k−1
−∞

[

log

(

1 +
σ2
epred,∞(xk−1

−∞)

σ2
n

|xk|2
)]]

(58)

where ρ is the average SNR, see (4). Obviously, the upper

bound in (58) still depends on the channel prediction error

variance σ2
epred,∞(xk−1

−∞), which itself depends on the distribu-

tion of the input symbols in the past. Effectively σ2
epred,∞(xk−1

−∞)
is itself a random quantity. For infinite transmission lengths,

i.e., N → ∞, its distribution is independent of the time

instant k, as the channel fading process is stationary and as

the transmit symbols are i.i.d..

4) The Prediction Error Variance σ2
epred,∞(xk−1

−∞): The pre-

diction error variance σ2
epred,∞(xk−1

−∞) depends on the distribu-

tion of the input symbols xk−1
−∞ . To construct an upper bound

on the RHS of (58), we need to find a distribution of the

transmit symbols in the past, i.e., xk−1
−∞ , which leads to a

distribution of σ2
epred,∞(xk−1

−∞) that maximizes the RHS of (58).

Therefore, we have to express the channel prediction error

variance σ2
epred,∞(xk−1

−∞) as a function of the transmit symbols

in the past, i.e., xk−1
−∞ . In a first step, for the case of a finite

past time horizon it is given by

σ2
epred(x

N−1
1 ) = σ2

h − rH
y
N−1
1 hN|xN−1

1

R−1

y
N−1
1 |xN−1

1

r
y
N−1
1 hN|x

N−1
1

(59)

where R
y
N−1
1 |xN−1

1
is the correlation matrix of the observa-

tions yN−1
1 while the past transmit symbols xN−1

1 are known,

i.e.,

R
y
N−1
1 |xN−1

1
= E

[

yN−1
1 (yN−1

1 )H
∣

∣xN−1
1

]

= XN−1RhX
H
N−1 + σ2

nIN−1 (60)

with XN−1 being a diagonal matrix containing the past trans-

mit symbols such that XN−1 = diag
(

xN−1
1

)

. In addition,Rh

is the autocorrelation matrix of the channel fading process

Rh = E
[

hN−1
1 (hN−1

1 )H
]

(61)

where hN−1
1 contains the fading weights from time instant 1

to N−1. The cross correlation vector r
y
N−1
1 hN |xN−1

1
between

the observation vector yN−1
1 and the fading weight hN while

knowing the past transmit symbols xN−1
1 is given by

r
y
N−1
1 hN |xN−1

1
= E

[

yN−1
1 h∗

N

∣

∣xN−1
1

]

= XN−1rh,pred (62)

where rh,pred = [rh(−(N − 1)) . . . rh(−1)]T with the auto-

correlation function rh(l) defined in (2).

Substituting (60) and (62) into (59) yields

σ2
epred(x

N−1
1 )

= σ2
h

− rHh,predX
H
N−1

(

XN−1RhX
H
N−1 + σ2

nIN−1

)−1
XN−1rh,pred

= σ2
h − rHh,pred

(

Rh + σ2
n

(

XH
N−1XN−1

)−1
)−1

rh,pred

= σ2
h − rHh,pred

(

Rh + σ2
nZ

−1
)−1

rh,pred (63)

where for (63) we have used Z = XH
N−1XN−1. For ease of

notation, we omit the index N − 1.5

Recall that we want to derive an upper bound on the achiev-

able rate with i.i.d. input symbols by maximizing the RHS of

(58) over all i.i.d. distributions of the transmit symbols in the

past with an average power ασ2
x. Obviously, the distribution

5Note that the inverse of Z in (63) does not exist if a diagonal element zi
of the diagonal matrix Z is zero, i.e., one transmit symbol has zero power.
However, as the prediction error variance is continuous in zi = 0 for all i
this does not lead to problems in the following derivation.
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of the phases of the past transmit symbols xN−1
1 has no

influence on the prediction error variance σ2
epred(x

N−1
1 ). Thus,

it rests to evaluate, for which distribution of the power of the

past transmit symbols the RHS of (58) is maximized. In the

following, we will show that the RHS of (58) is maximized

in case the past transmit symbols have a constant power

ασ2
x. I.e., calculation of the prediction error variance under

the assumption that the past transmit symbols are constant

modulus symbols with transmit power |xk|2 = ασ2
x maximizes

the RHS of (58) over all i.i.d. input distributions for the given

average power constraint of ασ2
x.

To prove this statement, we use the fact that the expression

in the expectation operation at the RHS of (58) (but here for

the case of a finite past time horizon) with (63), i.e.,

log

(

1 +
|xN |2
σ2
n

(

σ2
h − rHh,pred

(

Rh + σ2
nZ

−1
)−1

rh,pred

)

)

(64)

is convex with respect to each individual element zi of the

diagonal of Z, which we name z. See Appendix A for the

proof. As the zi are i.i.d. we can apply Jensen’s inequality for

each individual zi yielding

Ez

[

log

(

1 +
|xN |2
σ2
n

(

σ2
h − rHh,pred

(

Rh + σ2
nZ

−1
)−1

rh,pred

)

)]

≥ log

(

1 +
|xN |2
σ2
n

×
(

σ2
h − rHh,pred

(

Rh + σ2
n (Ez [Z])

−1
)−1

rh,pred

))

= log

(

1 +
|xN |2
σ2
n

×
(

σ2
h − rHh,pred

(

Rh +
σ2
n

ασ2
x

IN−1

)−1

rh,pred

))

= log

(

1 +
|xN |2
σ2
n

σ2
epred,CM

)

(65)

where σ2
epred,CM is the channel prediction error variance in case

all past transmit symbols are constant modulus symbols with

power ασ2
x, cf. (63). Here, the index CM denotes constant

modulus.

For an arbitrarily long past we can conclude that the RHS

of (58) is upper-bounded by

I ′(y;x) ≤ log (αρ+ 1)− Exk

[

log

(

1 +
σ2
epred,CM,∞

σ2
n

|xk|2
)]

(66)

where σ2
epred,CM,∞

is the channel prediction error variance in

case all past transmit symbols are constant modulus symbols

with power ασ2
x and an infinitely long past observation hori-

zon. In this case, the prediction error variance is no longer a

random quantity but is constant for all time instances k. It is
given by [1]

σ2
epred,CM,∞

=
σ2
n

ασ2
x

{

exp

(

∫ 1
2

− 1
2

log

(

1 +
ασ2

x

σ2
n

Sh(f)

)

df

)

− 1

}

.

(67)

As far as we know, the upper bound on the achievable

rate in (66) is new. The innovation in the derivation of this

bound lies in the fact that we separate the input symbols

into the one at the time instant xk and the previous input

symbols contained in xk−1
−∞ . The latter ones are only relevant

to calculate the prediction error variance, which itself is a

random variable depending on the distribution of the past

transmit symbols. We have shown that the achievable rate

with i.i.d. input symbols is upper-bounded if the prediction

error variance is calculated under the assumption that all past

transmit symbols are constant modulus input symbols. As the

assumption on constant modulus symbols is only used in the

context of the prediction error variance, the upper bound on the

achievable rate still holds for any i.i.d. input distribution with

the given average power constraint. This allows us to evaluate

this bound also for the case of i.i.d. Gaussian input symbols.
5) Gaussian Input Symbols: For i.i.d. proper Gaussian (PG)

input symbols with (66) we get

I ′(y;x)
∣

∣

PG

≤ sup
α∈[0,1]

{

log (αρ+ 1)

−
∫ ∞

0

log

(

1 +
σ2
epred,CM,∞

σ2
h

αρz

)

e−zdz

}

(68)

≤ sup
α∈[0,1]

{

log (αρ+ 1)

−
∫ ∞

0

log

(

1 +
σ2
epred,CM,∞

∣

∣

α=1

σ2
h

αρz

)

e−zdz

}

(69)

= log (ρ+ 1)−
∫ ∞

0

log

(

1 +
σ2
epred,CM,∞

∣

∣

α=1

σ2
h

ρz

)

e−zdz

(70)

where (69) is based on the fact that σ2
epred,CM,∞

monotonically

decreases with an increasing α, and, thus, that the term

on the RHS of (68) is maximized if the prediction error

variance is calculated for α = 1, which is denoted by writing

σ2
epred,CM,∞

∣

∣

α=1
. Furthermore, (70) follows from the monotonic-

ity of the argument of the supremum in (69) in α, which

can be shown analogously to the monotonicity of ∆1 in (40).

In conclusion, the upper bound for Gaussian input symbols

is maximized for the maximum average transmit power σ2
x.

Based on this and in combination with the coherent upper

bound, cf. (33), we are able to state the following theorem:

Theorem 2. For i.i.d. zero-mean proper Gaussian input sym-

bols and SNR ρ the achievable rate is upper-bounded by

I ′(y;x) ≤ min

{

I ′(x;y|h), log (ρ+ 1)

−
∫ ∞

0

log

(

1 +
σ2
epred,CM,∞

∣

∣

α=1

σ2
h

ρz

)

e−zdz

}

(71)

with I ′(x;y|h) given in (10) and σ2
epred,CM,∞

∣

∣

α=1
given by

(67) with α = 1.
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Fig. 2. Comparison of upper bound on the achievable rate with i.i.d. Gaussian
inputs based on channel prediction (71) with upper bound (33) and lower
bound (35) on the achievable rate with i.i.d. Gaussian inputs; rectangular
Sh(f).

Fig. 2 shows the prediction based upper bound on the

achievable rate given in (71) in comparison to the upper and

lower bound given by (33) and (35). A comparison of the

prediction based upper bound (71) and the bound given in (33)

shows, that it depends on the channel parameters which one

is tighter. It can be shown that for fd → 0 and for fd = 0.5
both bounds, i.e., (32) and (70), are equal. For other fd it

depends on the SNR ρ which bound is tighter. An analytical

comparison turns out to be difficult due to the different ways

of lower-bounding h′(y|x).
6) Peak Power Constrained Input Distributions: For peak

power constrained input symbols with the nominal peak-to-

average power ratio β = Ppeak/σ
2
x, with (66) we get

sup
Ppeak

i.i.d.

I ′(y;x)

≤ sup
α∈[0,1]

sup
Ppeak

i.i.d.

∣

∣α

{

log (αρ+ 1)

− Exk

[

log

(

1 +
σ2
epred,CM,∞

σ2
n

|xk|2
)]}

= sup
α∈[0,1]

{

log (αρ+ 1)

− inf
Ppeak

i.i.d.

∣

∣α

Exk

[

log

(

1 +
σ2
epred,CM,∞

σ2
n

|xk|2
)]}

= sup
α∈[0,1]

{

log (αρ+ 1)− α

β
log

(

1 +
σ2
epred,CM,∞

σ2
h

ρβ

)}

(72)

where Ppeak

i.i.d. corresponds to Pi.i.d. in (48) but with the ad-

ditional peak power constraint |xk|2 ≤ βσ2
x. Furthermore,

Ppeak

i.i.d. |α corresponds to Ppeak

i.i.d. but with the average transmit

power fixed to ασ2
x, i.e., E[|xk|2] = ασ2

x. Equality (72) follows

from

inf
Ppeak

i.i.d.

∣

∣α

Exk

[

log

(

1 +
σ2
epred,CM,∞

σ2
n

|xk|2
)]

= inf
Ppeak

i.i.d.

∣

∣α

∫

√
Ppeak

0

log

(

1 +
σ2
epred,CM,∞

σ2
n

z2
)

z2
z2p|xk|(z)dz

(73)

≥
log

(

1 +
σ2
epred,CM,∞

σ2
n

Ppeak

)

Ppeak

inf
Ppeak

i.i.d.

∣

∣α

∫

√
Ppeak

0

z2p|xk|(z)dz

(74)

=

log

(

1 +
σ2
epred,CM,∞

σ2
n

Ppeak

)

Ppeak

ασ2
x (75)

where for (74) we have used that all factors of the integrand

are positive and that the term

1

|xk|2
log

(

1 +
σ2
epred,CM,∞

σ2
n

|xk|2
)

=
1

z
log (1 + cz) (76)

with c =
σ2
epred,CM,∞

σ2
n

and z = |xk|2 is monotonically decreasing

in z as

∂

∂z

{

1

z
log (1 + cz)

}

=
c

(1 + cz)z
− log(1 + cz)

z2
< 0

⇔ cz

1 + cz
< log(1 + cz) (77)

which holds for cz > −1. Thus, the term in (76) is minimized

for z = |xk|2 = Ppeak. The RHS of (75) is achievable with on-

off keying and, thus, (74) holds with equality, yielding (72).

An approach similar to the one used to calculate the infimum

in (73) has been applied in [28] for an analogous problem.

Note that the prediction error variance σ2
epred,CM,∞

in (72)

depends on α. Now, we would have to calculate the supremum

in (72) with respect to α which turns out to be difficult due

to the dependency of σ2
epred,CM,∞

on α. However, as σ2
epred,CM,∞

monotonically decreases with an increasing α, and as (72)

monotonically increases with a decreasing σ2
epred,CM,∞

, we can

upper-bound (72) by setting α = 1 within σ2
epred,CM,∞

in (67),

i.e.,

sup
Ppeak

i.i.d.

I ′(y;x)

≤ sup
α∈[0,1]

{

log (αρ+ 1)− α

β
log

(

1 +
σ2
epred,CM,∞

∣

∣

α=1

σ2
h

ρβ

)}

.

(78)

The argument of the supremum in (78) is concave in α, and,
thus, there exists a unique maximum. This allows us to state

the following theorem:

Theorem 3. The achievable rate with peak power constrained

i.i.d. input symbols is bounded by

I ′(y;x) ≤ log(αoptρ+ 1)− αopt

β
log

(

1 +
σ2
epred,CM,∞

∣

∣

α=1

σ2
h

ρβ

)

(79)
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with

αopt = min







1,

(

1

β
log

(

1 +
σ2
epred,CM,∞

∣

∣

α=1

σ2
h

ρβ

))−1

− 1

ρ







.

(80)

a) Comparison to Capacity Bounds in [6] and [7]: In

the following, we compare the upper bound on the achievable

rate with peak power constrained i.i.d. input symbols in (79)

with the upper bound on the peak power constrained capacity

given in [6, Prop. 2.2], see (46), and with the lower bound on

the peak power constrained capacity given in [7, (35)]:

Cl1(ρ) = h(yk|ĥk)−
∫ 1

2

− 1
2

log

(

πeσ2
n

(

1 + ρ
Sh(f)

σ2
h

))

df

(81)

where k is an arbitrary chosen time instant with an infinitely

long past and h(yk|ĥk) is the differential output entropy while

conditioning on the channel estimate ĥk, being given by the

MMSE estimate E
[

hk

∣

∣xk−1
−∞ ,yk−1

−∞

]

. Based on a time-sharing

argumentation an enhanced lower bound on the peak power

constrained capacity is given by [7, (29)/(35)]

C ≥ max
γ∈[1,β]

1

γ
Cl1(ργ). (82)

b) Numerical Evaluation: Fig. 3 shows the upper bound

on the achievable rate with i.i.d. input symbols and a peak

power constraint in (79) in comparison to the upper bound on

the peak power constrained capacity given in [6, Prop. 2.2],

i.e., (46). Although not explicitly denoted, both upper bounds

are combined with the coherent upper bound I ′(y;x|h) in

(10), cf. (33). For comparison the lower bounds on the peak

power constrained capacity without time-sharing (81) and

with time-sharing (γopt) (82) are shown. The lower bound

in (81) is achievable with constant modulus input symbols

with a uniformly distributed phase. Time-sharing means that

the transmitter uses the channel only a 1/γ part of the

time. Obviously, time-sharing is not in accordance with the

assumption on i.i.d. input symbols. Therefore, the lower bound

without time-sharing matches the new upper bound on the

achievable rate with i.i.d. input symbols in (79), while the

lower bound with time-sharing (γopt) only matches the capacity

upper bound in (46). From Fig. 3 it can be seen that the upper

bound on the achievable rate with i.i.d. input symbols in (79) is

lower or equal than the capacity upper bound in (46). However,

(79) is only an upper bound on the achievable rate with i.i.d.

input symbols and not an upper bound on the capacity, as

i.i.d. input symbols are in general not capacity-achieving [6].

This can also be seen, as the lower bound on the achievable

rate with time-sharing is larger than the upper bound on the

achievable rate with i.i.d. input symbols (79) for very low

SNRs. Furthermore, it is worth mentioning that for the case

of a nominal peak-to-average power ratio β = 1, the upper

bound in (79) and the one given in [6, Prop. 2.2], i.e., (46),

coincide.

V. COMPARISON TO SYNCHRONIZED DETECTION WITH

PILOT BASED CHANNEL ESTIMATION

In typical mobile communication systems periodical pilot

symbols are introduced into the transmit data sequence. The

pilot symbol spacing L is chosen such that the channel

fading process is sampled at least with Nyquist frequency,

i.e., L < ⌊1/(2fd)⌋. Based on these pilot symbols the channel

is estimated, allowing for a coherent detection (synchronized

detection) [16, Ch. 4.3.1]. As coherent detection enables for

a decoding complexity per symbol that is independent of

the sequence length for long sequences, it is implemented in

almost all practical systems.

In conventional receivers, the channel estimation and the de-

tection/decoding are two separate steps, such that the channel

is estimated solely based on the pilot symbols. The resulting

channel estimation error process is temporally correlated.

However, performing coherent detection, the information con-

tained in this temporal correlation is discarded. For a detailed

discussion on this, we refer to [29]. Bounds on the achievable

rate for this separate processing have been given in [3]. For

i.i.d. Gaussian data symbols these bounds become

Rsep ≥ RL,sep =
L− 1

L

∫ ∞

0

log






1 + ρ

1−
σ2
epil

σ2
h

1 + ρ
σ2
epil

σ2
h

z






e−zdz

(83)

Rsep ≤ RU,sep = RL,sep +
L− 1

L

(

log

(

1 + ρ
σ2
epil

σ2
h

)

−
∫ ∞

0

log

(

1 + ρ
σ2
epil

σ2
h

z

)

e−zdz

)

(84)

where σ2
epil is the channel estimation error variance when

estimating the channel solely based on pilot symbols which

is given by

σ2
epil =

∫ 1
2

− 1
2

Sh(f)
ρ
L

Sh(f)
σ2
h

+ 1
df. (85)
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With (83) it can easily be seen that the achievable rate is

decreased in comparison to perfect channel knowledge by two

factors. First, symbol time instances that are used for pilot

symbols are lost for data symbols leading to the pre-log factor
L−1
L , and secondly, the average SNR is decreased by the factor

(1 − σ2
epil/σ

2
h)/(1 + ρσ2

epil/σ
2
h) due to the channel estimation

error variance.

Fig. 4 shows a comparison of the bounds on the achievable

rate with synchronized detection based on a solely pilot

based channel estimation in (83) and (84) with the bounds

on the achievable rate with i.i.d. Gaussian input symbols.

For synchronized detection with a solely pilot based channel

estimation the pilot spacing has been chosen such that the

lower bound on the achievable rate in (83) is maximized. As

this lower bound is relatively tight, the chosen pilot spacing

should be close to the one that maximizes the achievable rate

with synchronized detection using a solely pilot based channel

estimation. Obviously, for the practically important range

of small channel dynamics, i.e., fd ≪ 0.1, the achievable

rate with synchronized detection using a solely pilot based

channel estimation stays below the achievable rate with i.i.d.

Gaussian input symbols, indicating the possible gain when

using enhanced receiver structures. Even in case of using pilot

symbols, the receiver performance can be enhanced by using a

joint processing of pilot and data symbols instead of a separate

processing. For a more detailed discussion on the difference

between separate and joint processing we refer to [29]. One

possibility of such a joint processing is to use an iterative

code-aided channel estimation, where the channel estimation is

enhanced based on reliability information on the data symbols

delivered by the decoder. Based on this enhanced channel

estimation detection and decoding is performed again, see e.g.,

[30] and [31].

VI. CONCLUDING REMARKS

The main focus of the present paper is the study of the

achievable rate with i.i.d. Gaussian inputs. We have derived

two new upper bounds on the achievable rate for this class

of input distributions which are functions of the SNR and the

PSD of the channel fading process. Among other things, we

have shown that the achievable rate with i.i.d. Gaussian inputs

has the same high SNR slope as the peak power constrained

capacity, meaning that this kind of input distribution is not

severely suboptimal.

Gaussian inputs are of practical interest. They serve well

to upper-bound the achievable rate of practical modulation

and coding schemes in the coherent case [10]. We have

been particularly interested to compare the bounds on the

achievable rate with i.i.d. Gaussian input symbols to those for

synchronized detection employing solely pilot based channel

estimation, a method which today is almost universally used

in practice. The difference of the bounds is a useful indication

of how much gain can be achieved using advanced receiver

algorithms, for example iterative code-aided channel estima-

tion. The numerical results show that the potential gain for

such receivers is moderate for channel dynamics of practical

relevance (fd < 10−3).

APPENDIX A

CONVEXITY OF (64)

To prove that (64) is convex with respect to the individ-

ual diagonal elements of Z, we rewrite the prediction error

variance σ2
epred(x

N−1
1 ) = σ2

epred(z) as follows:

σ2
epred(z) = σ2

h − rHh,pred
(

Rh + σ2
nZ

−1
)−1

rh,pred

= σ2
h − rHh,pred

(

R−1
h −R−1

h

(

Z

σ2
n

+R−1
h

)−1

R−1
h

)

rh,pred

(86)

= σ2
h − rHh,pred

×
(

R−1
h −R−1

h

(

ziVi + Z\i

σ2
n

+R−1
h

)−1

R−1
h

)

rh,pred

(87)

= σ2
h − rHh,pred

(

R−1
h −R−1

h

[

(

1

σ2
n

Z\i +R−1
h

)

×
{

(

1

σ2
n

Z\i +R−1
h

)−1
zi
σ2
n

Vi + I

}]−1

R−1
h

)

rh,pred

= σ2
h − rHh,pred

(

R−1
h −R−1

h

{(

Z\i

σ2
n

+R−1
h

)−1
zi
σ2
n

Vi + I

}−1

×
(

1

σ2
n

Z\i +R−1
h

)−1

R−1
h

)

rh,pred

= σ2
h − rHh,pred

(

R−1
h −R−1

h

{

I− zi
1+ziλmax

(

Z\i

σ2
n

+R−1
h

)−1

× Vi

σ2
n

}

(

Z\i

σ2
n

+R−1
h

)−1

R−1
h

)

rh,pred

(88)
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= σ2
h − rHh,pred

(

R−1
h −R−1

h

(

Z\i

σ2
n

+R−1
h

)−1

R−1
h

)

rh,pred

−
zir

H
h,predR

−1
h

(

Z\i

σ2
n
+R−1

h

)−1
Vi

σ2
n

(

Z\i

σ2
n
+R−1

h

)−1

R−1
h rh,pred

1 + ziλmax

= σ2
epred(z\i)−

zi · a
1 + ziλmax

(89)

where for (86) we have used the matrix inversion lemma, and

for (87) we have separated the diagonal matrix Z as follows:

Z = Z\i + ziVi (90)

where Z\i corresponds to Z except that the i-th diagonal

element is set to 0, Vi is a matrix with all elements zero

except of the i-th diagonal element being equal to 1, and zi
is the i-th diagonal element of the matrix Z. In addition, for

(88) we have used the Sherman-Morrison formula yielding

(

I+ abT
)−1

= I− 1

1 + bTa
abT (91)

for arbitrary vectors a,b of equal length and bTa 6= −1. To
apply (91) we identify the rank one matrix

B =

(

1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Vi. (92)

with abT

zi
. Hence λmax in (88) is the non-zero eigenvalue of

the rank one matrix B. Furthermore, for (89) we substituted

σ2
epred(z\i) for

σ2
epred(z\i)

= σ2
h − rHh,pred

(

R−1
h −R−1

h

(

Z\i

σ2
n

+R−1
h

)−1

R−1
h

)

rh,pred

(93)

which is the prediction error variance if the observation

at the i-th time instant is not used for channel prediction.

Additionally, for (89) we have also used the substitution

a = rHh,predR
−1
h

(

Z\i

σ2
n

+R−1
h

)−1
Vi

σ2
n

(

Z\i

σ2
n

+R−1
h

)−1

R−1
h rh,pred

≥ 0 (94)

where the nonnegativity follows as Vi is positive semidefinite.

Thus, with (89) we have found a separation of the channel

prediction error variance σ2
epred(z) into the term σ2

epred(z\i) be-
ing independent of zi, and an additional term, which depends

on zi. Note that a and λmax in the second term in (89) are

independent of zi and that the element i is arbitrarily chosen.

I.e., we can use this separation for each diagonal element of Z.

By substituting (89) into (64) we get

log

(

1 +
|xN |2
σ2
n

(

σ2
epred(z\i)−

zi · a
1 + ziλmax

))

= K. (95)

Recall that we want to show the convexity of (95) with

respect to the element zi. Therefore, we calculate its second

derivative with respect to zi which is given by

∂2K

(∂zi)2
=

|xN |2

σ2
n

a2λmax(1+ziλmax)
(1+ziλmax)4

(

1 + |xN |2

σ2
n

(

σ2
epred(z\i)−

azi
1+ziλmax

))2

×







1 +
|xN |2
σ2
n



σ2
epred(z\i)−

a
(

zi +
1

2λmax

)

1 + ziλmax











(96)

and we will show that it is nonnegative, i.e.,

∂2K

(∂zi)2
≥ 0. (97)

Therefore, first we show that λmax is nonnegative based on the

definition of the eigenvalues of B

Bu =

(

1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Viu = λmaxu

⇒ 1

σ2
n

uHViu = λmaxu
H

(

1

σ2
n

Z\i +R−1
h

)

u

⇒ λmax ≥ 0 (98)

where (98) follows from the fact that the eigenvalues of
(

1
σ2
n
Z\i +R−1

h

)

are nonnegative, as Rh is positive definite

and the diagonal entries of the diagonal matrix Z\i are also

nonnegative. In addition, Vi is also positive semidefinite.

With λmax, zi, and a being nonnegative, for the proof of

(97), it rests to show that

σ2
epred(z\i)−

a

1 + ziλmax

(

zi +
1

2λmax

)

≥ 0. (99)

To prove (99), we calculate the derivative of its LHS with

respect to zi, which is given by

∂

∂zi







σ2
epred(z\i)−

a
(

zi +
1

2λmax

)

1 + ziλmax







= − a

2(1 + ziλmax)2

≤ 0 (100)

where for the last inequality we have used (94). I.e., the

LHS of (99) monotonically decreases in zi. Furthermore, for

zi → ∞ the LHS of (99) becomes

lim
zi→∞







σ2
epred(z\i)−

a
(

zi +
1

2λmax

)

1 + ziλmax







= lim
zi→∞

σ2
epred(z)

(101)

≥ 0 (102)

where (101) follows due to (89), and where (102) holds as the

prediction error variance must be nonnegative. As the LHS

of (99) is monotonically decreasing in zi and as its limit for

zi → ∞ is nonnegative, (99) must hold.

Hence, with (99) inequality (97) holds and, thus, (95) is

convex in zi. As the element i has been chosen arbitrarily, in

conclusion, we have shown that (64) is convex in each zi for
i = 1, . . . , N − 1.
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