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Abstract—In this paper, we consider a multihop wireless sensor
network with multiple relay nodes for each hop where the
amplify-and-forward scheme is employed. We present algorith-
mic strategies to jointly design linear receivers and the power
allocation parameters via an alternating optimization approach
subject to different power constraints which include global, local
and individual ones. Two design criteria are considered: the
first one minimizes the mean-square error and the second one
maximizes the sum-rate of the wireless sensor network. We
derive constrained minimum mean-square error and constrained
maximum sum-rate expressions for the linear receivers and the
power allocation parameters that contain the optimal complex
amplification coefficients for each relay node. An analysis of the
computational complexity and the convergence of the algorithms
is also presented. Computer simulations show good performance
of our proposed methods in terms of bit error rate and sum-
rate compared to the method with equal power allocation and
an existing power allocation scheme.

Index Terms—Minimum mean-square error (MMSE) criterion,
maximum sum-rate (MSR) criterion, power allocation, multihop
transmission, wireless sensor networks (WSNs), relays

I. INTRODUCTION

Recently, wireless sensor networks (WSNs) have attracted
a great deal of research interest because of their unique
features that allow a wide range of applications in the areas of
defence, environment, health and home [1]. WSNs are usually
composed of a large number of densely deployed sensing
devices which can transmit their data to the desired destina-
tion through multihop relays [2]. Considering the traditional
wireless networks such as cellular systems, the primary goal in
such systems is to provide high QoS and bandwidth efficiency.
The base stations have easy access to the power supply and
the mobile user can replace or recharge exhausted batteries in
the handset [1]. However, power conservation is getting more
important, especially for WSNs. One of the most important
constraints on WSNs is the low power consumption require-
ment as sensor nodes carry limited, generally irreplaceable,
power sources. Therefore, low complexity and high energy
efficiency are the most important design characteristics for
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WSNs. In a cooperative WSN, nodes relay signals to each
other in order to propagate redundant copies of the same
signals to the destination nodes. Among the existing relaying
schemes, the amplify-and-forward (AF) and the decode-and-
forward (DF) are the most popular approaches [3], [4]. In the
AF scheme, the relay nodes amplify the received signal and
rebroadcast the amplified signals toward the destination nodes.
In the DF scheme, the relay nodes first decode the received
signals and then regenerate new signals to the destination
nodes subsequently.

Some power allocation methods have been proposed for
WSNs to obtain the best possible signal-to-noise ratio (SNR)
or best possible quality of service (QoS) [5], [6] at the desti-
nations. By adjusting appropriately the power levels used for
the links between the sources, the relays and the destinations,
significant performance gains can be obtained for a given
power budget. Most of the research on power allocation for
WSNs are based on the assumption of perfect synchronization
and available channel state information (CSI) at each node. A
WSN is said to have full CSI when all of its nodes have
access to accurate and up-to-date CSI. When full CSI is
available to all the nodes, the power of each node can be
optimally allocated to improve the system efficiency and lower
the outage probability [7] or bit error rate (BER) [8], [9].

In WSNs, some power allocation problems can be for-
mulated as centralized or distributed optimization problems
subject to power constraints on certain groups of signals. For
the centralized schemes [10], [11], a network controller is
required which is responsible for monitoring the information
of the whole network such as the CSI and SNR, calculating the
optimum power allocation parameters of each link and sending
them to all nodes via feedback channels. This scheme consid-
ers all the available links but it has two major drawbacks. The
first one is the high computational burden and storage demand
at the network controller. The second one is that it requires
a significant amount of control information provided by feed-
back channels which leads to a loss in bandwidth efficiency.
For the distributed schemes [12], each node only needs to
have the knowledge of its ’partner’ information and calculate
its own power allocation parameter. Therefore, a distributed
scheme requires less control information and is ideally suited
to WSNs. However, the performance of distributed schemes is
inferior to centralized schemes [13].

Due to the inherent limitations in the sensor node size,
power and cost [1], they are only able to communicate
in a short range. Therefore, multihop communication [14]



is employed to enhance the coverage of WSNs. By using
multihop transmissions, the rapid decay of the received signal
which is caused by the increased transmission distance can be
overcome. Moreover, pathways around the obstacles between
the source and destination can be provided to avoid the signal
shadowing [15]. Several works about power allocation of mul-
tihop transmission systems have been proposed in [16]-[20].
The work reported in [16] develops a cross-layer model for
multihop communication and analyzes the energy consump-
tion of multihop topologies with equal distance and optimal
node spacing. Centralized and Distributed schemes for power
allocation are presented to minimize the total transmission
power under a constraint on the BER at the destination in [17]
and [18]. In [19], two optimal power allocation schemes are
proposed to maximize the instantaneous received SNR under
short-term and long-term power constraints. In [20], the outage
probability is considered as the optimization criterion to derive
the optimal power allocation schemes under a given power
budget for both regenerative and non-regenerative systems.

In this paper, we consider a general multihop WSN where
the AF relaying scheme is employed. The proposed strategy is
to jointly design the linear receivers and the power allocation
parameters that contain the optimal complex amplification
coefficients for each relay node via an alternating optimization
approach [21], [22]. Two kinds of linear receivers are designed,
the minimum mean-square error (MMSE) receiver and the
maximum sum-rate (MSR) receiver. They can be considered
as solutions to constrained optimization problems where the
objective function is the mean-square error (MSE) cost func-
tion or the sum-rate (SR) and the constraint is a bound on the
power levels among the relay nodes. Then, the constrained
MMSE or MSR expressions for the linear receiver and the
power allocation parameter can be derived. The major novelty
in these strategies presented here is that they are applicable
to general multihop WSNs with multi source nodes and des-
tination nodes, as opposed to the simple two-hop WSNs with
one pair of source-destination nodes [5], [23], [24]. Unlike the
previous works on the power allocation for multihop systems
in [16]-[20], in our work, the power allocation and receiver
coefficients are jointly optimized. The joint strategies were
proposed for a two-hop WSN with multiple relay nodes in
our previous work [25]. In order to increase the applicability
of our investigation, in this paper, we develop joint strategies
for general multihop WSNs. They can be considered as an
extension of the strategies proposed for the two-hop WSNs
and more complex mathematical derivations are presented.
Moreover, different kinds of power constraints can be con-
sidered and compared. For the MMSE receiver, we present
three strategies where the allocation of power level across the
relay nodes is subject to global, local and individual power
constraints. Another fundamental contribution of this work is
the derivation of a closed-form solution for the Lagrangian
multiplier (λ) that arises in the expressions of the power
allocation parameters. For the MSR receiver, the local power
constraints are considered. We propose a strategy that employs
iterations with the Generalized Rayleigh Quotient [27] to
solve the optimization problem in an alternating fashion. Some
preliminary results of these work have been reported in [26].

The main contributions of this paper can be summarized as:
1) Constrained MMSE expressions for the design of

linear receivers and power allocation parameters for
multihop WSNs. The constraints include the global,
local and individual power constraints.

2) Constrained MSR expressions for the design of linear
receivers and power allocation parameters for multi-
hop WSNs subject to local power constraints.

3) Alternating optimization algorithms that compute the
linear receivers and power allocation parameters in
1) and 2) to minimize the mean-square error or
maximize the sum-rate of the WSN.

4) Analysis of the computational complexity and the
convergence of the proposed optimization algo-
rithms.

The rest of this paper is organized as follows. Section II
describes the general multihop WSN system model. Section
III develops three joint MMSE receiver design and power al-
location strategies subject to three different power constraints.
Section IV develops the joint MSR receiver design and power
allocation strategy subject to local power constraints. Section
V contains an analysis of the computational complexity and
the convergence. Section VI presents and discusses the sim-
ulation results, while Section VII provides some concluding
remarks.

II. MULTIHOP WSN SYSTEM MODEL

Consider a general m-hop wireless sensor network (WSN)
with multiple parallel relay nodes for each hop, as shown in
Fig. 1. The WSN consists of N0 source nodes, Nm destination
nodes and Nr relay nodes which are separated into m − 1
groups: N1, N2, ... , Nm−1. The index refers to the number
of nodes after a given phase of transmission starting with 0
and going up to m−1. The proposed optimization algorithms
in this paper refer to a particular instance, for which the roles
of the nodes acted as sources, relays and destinations have
been pre-detemined. In subsequent time slots these roles can
be swapped so that all nodes can actually work as potential
sources. We concentrate on a time division scheme with
perfect synchronization, for which all signals are transmitted
and received in separate time slots. The sources first broadcast
the N0×1 signal vector s which contains N0 signals in parallel
to the first group of relay nodes. We consider an amplify-and-
forward (AF) cooperation protocol in this paper. An extension
to other cooperation protocols is straightforward. Each group
of relay nodes receives the signals, amplifies and rebroadcasts
them to the next group of relay nodes (or the destination
nodes). In practice, we need to consider the constraints on
the transmission policy. For example, each transmitting node
would transmit during only one phase. In our WSN system,
we assume that each group of relay nodes transmits the signal
to the nearest group of relay nodes (or the destination nodes)
directly. We can use a block diagram to indicate the multihop
WSN system as shown in Fig. 2. Let Hs denote the N1×N0

channel matrix between the source nodes and the first group
of relay nodes, Hd denote the Nm × Nm−1 channel matrix
between the (m − 1)th group of relay nodes and destination
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Fig. 1. An m-hop WSN with N0 source nodes, Nm destination nodes and
Nr relay nodes.
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Fig. 2. Block diagram of the multihop WSN system.

nodes, and Hi−1,i denote the Ni × Ni−1 channel matrix
between two groups of relay nodes as described by

Hs =


hs,1

hs,2

...
hs,N1

 , Hd =


hm−1,1

hm−1,2

...
hm−1,Nm

 , Hi−1,i =


hi−1,1

hi−1,2

...
hi−1,Ni

 ,

(1)
where hs,j = [hs,j,1, hs,j,2, ..., hs,j,N0 ] for j = 1, 2, ..., N1

denote the channel coefficients between the source nodes and
the jth relay of the first group of relay nodes, hm−1,j =
[hm−1,j,1, hm−1,j,2, ..., hm−1,j,Nm−1 ] for j = 1, 2, ..., Nm

denote the channel coefficients between the (m− 1)th group
of relay nodes and the jth destination node. Further, hi−1,j =
[hi−1,j,1, hi−1,j,2, ..., hi−1,j,Ni−1 ] for j = 1, 2, ..., Ni denotes
the channel coefficients between the (i − 1)th group of relay
nodes and the jth relay of the ith group of relay nodes. The
received signal at the ith group of relay nodes (xi) for each
phase can be expressed as:

Phase 1:
x1 = Hss + v1, (2)

y1 = F1x1, (3)

Phase 2:
x2 = H1,2A1y1 + v2, (4)

y2 = F2x2, (5)

...
Phase i: (i = 3, 4, ...,m− 1)

xi = Hi−1,iAi−1yi−1 + vi, (6)

yi = Fixi, (7)

At the destination nodes, the received signal can be ex-
pressed as

d = HdAm−1ym−1 + vd, (8)

where v is a zero-mean circularly symmetric complex addi-
tive white Gaussian noise (AWGN) vector with covariance
matrix σ2I. The matrix Ai = diag{ai,1, ai,2, ..., ai,Ni} is
a diagonal matrix whose elements represent the amplifica-
tion coefficient of each relay of the ith group. The matrix
Fi = diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni |2)}−

1
2 denotes

the normalization matrix which can normalize the power of the
received signal for each relay of the ith group of relays. Please
note that the property of the matrix vector multiplication
Ay = Ya will be used in the next section, where Y is the
diagonal matrix form of the vector y and a is the vector form
of the diagonal matrix A. At the receiver, a linear detector
is considered where the optimal filter and optimal amplifi-
cation coefficients are calculated. The optimal amplification
coefficients are transmitted to the relays through the feedback
channel. The block marked with a Q[·] represents a decision
device. In our proposed designs, the full CSI of the system is
assumed to be known at all the destination nodes. In practice,
a fusion center [28] which contains the destination nodes is
responsible for gathering the CSI, computing the optimal linear
filters and the optimal amplification coefficients. The fusion
center also recovers the transmitted signal of the source nodes
and transmits the optimal amplification coefficients to the relay
nodes via a feedback channel.

III. PROPOSED JOINT MMSE DESIGN OF THE RECEIVER
AND POWER ALLOCATION

In this section, three constrained optimization problems are
proposed to describe the joint design of the linear receiver (W)
and the power allocation parameter (a) subject to a global,
local and individual power constraints. They impose different
power limitations on all the relay nodes, each group of relay
nodes and each relay node, respectively. The assumptions
of these power constraints could determine the degrees of
freedom for allocating the power among the relay nodes which
will affect the performance and the lifetime of the networks.

A. MMSE Design with a Global Power Constraint

We first consider the case where the total power of all the
relay nodes is limited to PT . The proposed design can be
formulated as the following optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[∥s − WHd∥2],

subject to
m−1∑
i=1

Pi = PT

(9)

where (·)H denotes the complex-conjugate (Hermitian) trans-
pose, Pi is the transmitted power of the ith group of relay
nodes, and Pi = Ni+1aHi ai. In (9), we employ the equality as
the constraint other than the inequality because it is obvious



that the more available total power can be used the better
performance can be achieved, which means that even if we set
the constraint to be an inequality, the best performance will be
achieve when the power is set to be the maximum bound (i.e.
PT ). In addition, for such optimization problems it is easier
to derive algorithmic solutions for equality constraints rather
than inequality constraints.

To solve this constrained optimization problem, we adopt an
alternating optimization approach whose global convergence
has been established in [21] and [22] so that the global
minimum value can be achieved. We modify the MSE cost
function using the method of Lagrange multipliers [29] which
yields the following Lagrangian function

L =E[∥s − WHd∥2] + λ(

m−1∑
i=1

Ni+1aHi ai − PT )

=E(sHs)− E(dHWs)− E(sHWHd) + E(dHWWHd)

+ λ(
m−1∑
i=1

Ni+1aHi ai − PT ).

(10)

By fixing a1, ..., am−1 and setting the gradient of L in (10)
with respect to the conjugate of the filter W equal to zero,
where (·)∗ denotes the complex-conjugate, we get

Wopt =[E(ddH)]−1E(dsH)

=
[
HdAm−1E(ym−1yHm−1)A

H
m−1HH

d + σ2
nI
]−1

× HdAm−1E(ym−1sH).

(11)

The optimal expression for am−1 is obtained by equating the
partial derivative of L with respect to a∗m−1 to zero

∂L
∂a∗m−1

=− E(
∂dH

∂a∗m−1

Ws) + E(
∂dH

∂a∗m−1

WWHd)

+Nmλam−1

=− E(YH
m−1HH

d Ws)
+ E[YH

m−1HH
d WWH(HdYm−1am−1 + vd)]

+Nmλam−1

=0.
(12)

Therefore, we obtain

am−1,opt =[E(YH
m−1HH

d WWHHdYm−1) +NmλI]−1

× E(YH
m−1HH

d Ws)
=[HH

d WWHHd ◦ E(ym−1yH
m−1)

∗ +NmλI]−1

× [HH
d W ◦ E(ym−1sH)∗u]

(13)

where ◦ denotes the Hadamard (element-wise) product and
u = [1, 1, ..., 1]T .

Similarly, for i = 2, 3, ...m− 1, we have

∂L
∂a∗i−1

= −E(
∂dH

∂a∗i−1

Ws) + (
∂dH

∂a∗i−1

WWHd) +Niλai−1

= 0
(14)

where

∂dH

∂a∗i−1

= YH
i−1

(
m−1∏
k=i

HH
k−1,kFH

k AH
k

)
HH

d . (15)

Let

Bi−1 =
m−1∏
k=i

HH
k−1,kFH

k AH
k . (16)

Then, we get

ai−1,opt =[E(YH
i−1Bi−1HH

d WWHHdBH
i−1Yi−1) +NiλI]−1

× E(YH
i−1Bi−1HH

d Ws)
=[Bi−1HH

d WWHHdBH
i−1 ◦ E(yi−1yHi−1)

∗ +NiλI]−1

× [Bi−1HH
d W ◦ E(yi−1sH)∗u].

(17)

From (13) and (17), we conclude that

ai,opt =[E(YH
i BiHH

d WWHHdBH
i Yi) +Ni+1λI]−1

× E(YH
i BiHH

d Ws)
=[BiHH

d WWHHdBH
i ◦ E(yiy

H
i )∗ +Ni+1λI]−1

× [BiHH
d W ◦ E(yis

H)∗u]

(18)

where

Bi =

{ ∏m−1
k=i+1 HH

k−1,kFH
k AH

k , for i = 1, 2, ...,m− 2,
I, for i = m− 1.

(19)
Please see the Appendix to find the expressions of Fi,
E(yiyHi ), and E(yisH). The expressions in (11) and (18)
depend on each other. Thus, it is necessary to iterate them
with an initial value of ai (i = 1, 2, ...,m − 1) to obtain the
solutions.

The Lagrange multiplier λ can be determined by solving
m−1∑
i=1

Ni+1aHi,optai,opt = PT . (20)

Let
ϕi = E(YH

i BiHH
d WWHHdBH

i Yi) (21)

and
zi = E(YH

i BiHH
d Ws). (22)

Then, we get

ai = (ϕi +Ni+1λI)−1zi. (23)

When λ is a real value, we have

[(ϕi+Ni+1λI)−1]H = [(ϕi+Ni+1λI)H ]−1 = (ϕi+Ni+1λI)−1.
(24)

Equation (20) becomes
m−1∑
i=1

Ni+1zHi (ϕi+Ni+1λI)−1(ϕi+Ni+1λI)−1zi = PT . (25)

Using an eigenvalue decomposition (EVD), we have

ϕi = QiΛiQ−1
i (26)

where Λi = diag{αi,1, αi,2, ..., αi,Mi , 0, ..., 0} consists of
eigenvalues of ϕi and Mi = min{N0, Ni, Nm}. Then, we



get
ϕi +Ni+1λI = Qi(Λi +Ni+1λI)Q−1

i . (27)

Therefore, (25) can be expressed as
m−1∑
i=1

Ni+1zHi Qi(Λi +Ni+1λI)−2Q−1
i zi = PT . (28)

Using the properties of the trace operation, (28) can be written
as

m−1∑
i=1

Ni+1tr
(
(Λi +Ni+1λI)−2Q−1

i zizHi Qi

)
= PT . (29)

Defining Ci = Q−1
i zizHi Qi, (11) becomes

m−1∑
i=1

Ni∑
j=1

Ni+1(αi,j +Ni+1λ)
−2Ci(j, j) = PT . (30)

Since ϕi is a matrix with at most rank Mi, only the first Mi

columns of Qi span the column space of E(YH
i BiHH

d Ws)H
which causes the last (Ni−Mi) columns of zHi Qi to become
zero vectors and the last (Ni − Mi) diagonal elements of
Ci are zero. Therefore, we obtain the {

∑m−1
i=1 2Mi}th-order

polynomial in λ

m−1∑
i=1

Mi∑
j=1

Ni+1(αi,j +Ni+1λ)
−2Ci(j, j) = PT . (31)

B. MMSE Design with Local Power Constraints

Secondly, we consider the case where the total power of
the relay nodes in each group is limited to some value PT,i.
The proposed method can be considered as the following
optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[∥s − WHd∥2],

subject to Pi = PT,i, i = 1, 2, ...,m− 1,
(32)

where Pi as defined above is the transmitted power of the ith
group of relays, and Pi = Ni+1aHi ai. Using the method of La-
grange multipliers again, we obtain the following Lagrangian
function

L = E[∥s − WHd∥2] +
m−1∑
i=1

λi(Ni+1aHi ai − PT,i). (33)

Following the same steps as described in Section III.A, we get
the same optimal expression for W as in (11). The optimal
expression for the power allocation vector ai is different from
(18) and is given by

ai,opt =[BiHH
d WWHHdBH

i ◦ E(yiy
H
i )∗ +Ni+1λiI]−1

× [BiHH
d W ◦ E(yis

H)∗u],
(34)

where

Bi =

{ ∏m−1
k=i+1 HH

k−1,kFH
k AH

k , for i = 1, 2, ...,m− 2,
I, for i = m− 1.

(35)

The Lagrange multiplier λi can be determined by solving

Ni+1aHi,optai,opt = PT,i i = 1, 2, ...,m− 1. (36)

Following the same steps as in Section III.A, we obtain (m−1)
{2Mi}th-order polynomials in λi

Mi∑
j=1

Ni+1(αi,j+Ni+1λi)
−2Ci(j, j) = PT,i, i = 1, 2, ...,m−1.

(37)

C. MMSE Design with Individual Power Constraints

Thirdly, we consider the case where the power of each relay
node is limited to some value PT,i,j . The proposed method can
be considered as the following optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[∥s − WHd∥2],

subject to Pi,j = PT,i,j , i = 1, 2, ...,m− 1, j = 1, 2, ..., Ni,
(38)

where Pi,j is the transmitted power of the jth relay node in
the ith group, and Pi,j = Ni+1a

∗
i,jai,j . Using the method

of Lagrange multipliers once again, we have the following
Lagrangian function

L = E[∥s − WHd∥2] +
m−1∑
i=1

Ni∑
j=1

λi,j(Ni+1a
∗
i,jai,j − PT,i,j).

(39)
Following the same steps as described in Section III.A, we get
the same optimal expression for W as in (11), and the optimal
expression for the amplification coefficient

ai,j,opt = [ϕi(j, j) +Ni+1λi,j ]
−1[zi(j)−

∑
l∈I,l ̸=j

ϕi(j, l)ai,l],

(40)
where I = {1, 2, ..., Ni}, ϕi and zi have the same expression
as in (21) and (22). The Lagrange multiplier λi,j can be
determined by solving

Ni+1a
∗
i,j,optai,j,opt = PT,i,j i = 1, 2, ...,m−1, j = 1, 2, ...Ni.

(41)
Table I shows a summary of our proposed MMSE designs
with global, local and individual power constraints which will
be used for the simulations. If the quasi-static fading channel
(block fading) is considered in the simulations, we only
need two iterations. Alternatively, low-complexity adaptive
algorithms can be used to compute the linear receiver Wopt

and the power allocation parameter vector ai,opt.

IV. PROPOSED JOINT MAXIMUM SUM-RATE DESIGN OF
THE RECEIVER AND THE POWER ALLOCATION

In this section, we analyse the proposed joint MSR design
of the receiver and the power allocation. By the MSR designs,
the best possible SNR and QoS can be obtained at the
destinations. They will improve the spectrum efficiency which
is desirable for the WSNs with the limitation in the sensor
node computational capacity. Only the local constraints are
considered here, because of the MSR receiver we make use
of the Generalized Rayleigh Quotient which is only suitable



TABLE I
SUMMARY OF THE PROPOSED MMSE DESIGN WITH GLOBAL, LOCAL AND INDIVIDUAL POWER CONSTRAINTS

Global Power Constraint Local Power Constraints Individual Power Constraint
Initialize the algorithm by setting: Initialize the algorithm by setting: Initialize the algorithm by setting:

A =
√

PT∑m−1
i=1 NiNi+1

I Ai =
√

PT,i

NiNi+1
I for i = 1, 2, ...,m−1 ai,j =

√
PT,i,j

Ni+1
for i = 1, 2, ...,m− 1,

j = 1, 2, ..., Ni

For each iteration: For each iteration: For each iteration:
1. Compute Wopt in (11). 1. Compute Wopt in (11). 1. Compute Wopt in (11).
2. For i = 1, 2, ...,m− 1 2. For i = 1, 2, ...,m− 1 2. For i = 1, 2, ...,m− 1
a) Compute ϕi and zi in (21) and (22). a) Compute ϕi and zi in (21) and (22). a) Compute ϕi and zi in (21) and (22).
b) Calculate the EVD of ϕi in (26). b) Calculate the EVD of ϕi in (26). b) For j = 1, 2, ..., Ni

c) Solve λ in (31). c) Solve λi in (37). i) Solve λi,j in (41).
d) Compute ai,opt in (18). d) Compute ai,opt in (34). ii) Compute ai,j,opt in (40).

to solve optimization problems with vectors. It limits the types
of power constraints. By substituting (2)-(7) into (8), we get

d =C0,m−1s + C1,m−1v1 + C2,m−1v2
+ ...+ Cm−1,m−1vm−1 + vd

=C0,m−1s +
m−1∑
i=1

Ci,m−1vi + vd,

(42)

where

Ci,j =

{ ∏j
k=i Bk, if i 6 j,

I, if i > j,
(43)

and
B0 = Hs, (44)

Bi = Hi,i+1AiFi for i = 1, 2, ..., m− 2, (45)

Bm−1 = HdAm−1Fm−1. (46)

We focus on a system with one source node for simplicity. The
generalization to multiple sources amounts to performing the
optimization of the additional filters. Therefore, the expression
of the sum-rate (SR) in terms of bps/Hz for our m-hop WSN
is expressed as

SR =
1

m
log2

[
1 +

σ2
s

σ2
n

wHC0,m−1CH
0,m−1w

wH(
∑m

i=1 Ci,m−1CH
i,m−1)w

]
(bps/Hz),

(47)
where w is the linear receiver, and (·)H denotes the complex-
conjugate (Hermitian) transpose. Let

ϕ = C0,m−1CH
0,m−1 (48)

and

Z =
m∑
i=1

Ci,m−1CH
i,m−1. (49)

The expression for the sum-rate can be written as

SR =
1

m
log2

(
1 +

σ2
s

σ2
n

wHϕw
wHZw

)
=

1

m
log2(1 + ax), (50)

where
a =

σ2
s

σ2
n

(51)

and

x =
wHϕw
wHZw

. (52)

Since 1
m log2(1 + ax) is a monotonically increasing function

of x (a > 0), the problem of maximizing the sum-rate is
equivalent to maximizing x. In this section, we consider the
case where the total power of the relay nodes in each group is
limited to some value PT,i (local constraints). The proposed
method can be considered as the following optimization prob-
lem:

[wopt, a1,opt, ..., am−1,opt] = arg max
w,a1,...,am−1

wHϕw
wHZw

,

subject to Pi = PT,i, i = 1, 2, ...,m− 1

(53)

where Pi as defined above is the transmitted power of the
ith group of relays, and Pi = Ni+1aH

i ai. We note that the
expression wHϕw

wHZw in (53) is the Generalized Rayleigh Quotient.
Thus, the optimal solution of our maximization problem can
be obtained: wopt is any eigenvector corresponding to the
dominant eigenvalue of Z−1ϕ.

In order to obtain the optimal power allocation vector aopt,
we rewrite wHϕw

wHZw and the expression is given by

wHϕw
wHZw

=
aHi Miai

aHi Piai + wH
i Tiwi

, for i = 1, 2, ..., m−1, (54)

where

Mi =diag{wH
i Ci+1,m−1Hi,i+1Fi}C0,i−1CH

0,i−1

× diag{FH
i HH

i,i+1CH
i+1,m−1wi},

(55)

Pi =diag{wH
i Ci+1,m−1Hi,i+1Fi}(

i∑
k=1

Ck,i−1CH
k,i−1)

× diag{FH
i HH

i,i+1CH
i+1,m−1wi},

(56)

and

Ti =
m∑

k=i+1

Ck,m−1CH
k,m−1. (57)

Since the multiplication of any constant value and an eigen-
vector is still an eigenvector of the matrix, we express the



receive filter as

wi =
wopt√

wH
optTiwopt

. (58)

Hence, we obtain

wH
i Tiwi = 1 =

Ni+1aHi ai
PT,i

. (59)

By substituting (59) into (54), we get

wHϕw
wHZw

=
aH
i Miai

aHi Niai
for i = 1, 2, ..., m− 1, (60)

where
Ni = Pi +

Ni+1

PT,i
I. (61)

Likewise, we note that the expression aHMia
aHi Niai

in (60) is the
Generalized Rayleigh Quotient. Thus, the optimal solution of
our maximization problem can be obtained: ai,opt is any eigen-
vector corresponding to the dominant eigenvalue of N−1

i Mi

that satisfies aHi,optai,opt =
PT,i

Ni+1
. Here, the local power

constraints can be satisfied by employing a normalization.
When considering the global power constraint PT , there is
no unique solution of ai,opt (i = 1, 2, ...,m − 1) that satisfy∑m−1

i=1 Ni+1aHi,optai,opt = PT . Thus, for this reason, we do
not consider the global power constraint. The solutions of wopt

and ai,opt depend on each other. Therefore it is necessary to
iterate them with an initial value of ai (i = 1, 2, ...,m− 1) to
obtain the optimum solutions.

In this section, two methods are employed to calculate the
dominant eigenvectors. The first one is the QR algorithm
[30] which calculates all the eigenvalues and eigenvectors of
a matrix. We can choose the dominant eigenvector among
them. The second one is the power method [30] which only
calculates the dominant eigenvector of a matrix. Hence, the
computational complexity can be reduced. Table II shows a
summary of our proposed MSR design with a local power
constraint which will be used for the simulations. If the
quasi-static fading channel (block fading) is considered in the
simulations, we only need two iterations.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, an analysis of the computational complexity
and the convergence of the algorithms is developed. We
first illustrate the computational complexity requirements of
the proposed MMSE and MSR designs. We quantify the
computational complexity of the algorithms, which require a
given number of arithmetic operations per iteration. The lower
the number of operations the lower the power consumption
will be. Then, we make use of the convergence results for the
alternating optimization algorithms in [21], [22] and present
a set of sufficient conditions under which our proposed algo-
rithms will converge to the optimal solutions.

A. Computational Complexity Analysis

Table III and Table IV list the computational complexity per
iteration in terms of the number of multiplications, additions

TABLE II
SUMMARY OF THE PROPOSED MSR DESIGN WITH LOCAL POWER

CONSTRAINTS

Initialize the algorithm by setting

Ai =
√

PT,i

NiNi+1
I for i = 1, 2, ...,m− 1

For each iteration:
1. Compute ϕ and Z in (48) and (49).
2. Using the QR algorithm or the power method to

compute the dominant eigenvector of Z−1ϕ,
denoted as wopt.

3. For i = 1, 2, ...,m− 1
a) Compute Mi and Ni in (55) and (61).
b) Using the QR algorithm or the power method to

compute the dominant eigenvector of N−1
i Mi,

denoted as ai.
c) To ensure the local power constraint

aHi,optai,opt =
PT,i

Ni+1
, compute ai,opt =

√
PT,i

Ni+1aHi ai
ai.

and divisions for our proposed joint linear receiver design
(MMSE and MSR) and power allocation strategies. For the
joint MMSE designs, we use the QR algorithm to perform
the eigendecomposition of the matrix. Please note that in
this paper the QR decomposition employs the Householder
transformation [30], [31]. The quantities nQ and nP denote
the number of iterations of the QR algorithm and the power
method, respectively. For the computational complexity of λ
in Table III, it does not include the processing of solving
the equation in (31), (37) and (41), because the method with
a global power constraint, equation (31) is a higher order
polynomial whose complexity is difficult to be quantified. As
the multiplication dominates the computational complexity,
in order to compare the computational complexity of our
proposed joint MMSE and MSR designs, the number of
multiplications versus the number of relay nodes in each group
for each iteration are displayed in Fig. 3 and Fig 4. For the
purpose of illustration, we set m = 3, N0 = 1, N3 = 2 and
nQ = nP = 10. For the MMSE design, it can be seen that
our proposed receiver with a global constraint has the same
complexity as the receiver with local constraints. In practice,
when considering the processing of solving the equation in
(31), (37), the method with a global constraint will require a
higher computational complexity than the local constraints and
the difference will become larger along with the increase of the
number of hops (m). When the individual power constraints
are considered, the computational complexity is lower than
other constraints because there is no need to compute the
eigendecomposition for it. For the MSR design, employing
the power method to calculate the dominant eigenvectors has
a lower computational complexity than employing the QR
algorithm.

B. Sufficient Conditions for Convergence

To obtain convergence conditions, we need to define a
metric space and the Hausdorff distance that will extensively
be used. A metric space is an ordered pair (M, d), where M



TABLE III
COMPUTATIONAL COMPLEXITY PER ITERATION OF THE JOINT MMSE DESIGNS

Power Constraint Multiplications Additions Divisions

Nm(Nm − 1)(4Nm + 1)/6 Nm(Nm − 1)(4Nm + 1)/6
+(N0 +Nm−1)N2

d +N2
m−1Nm +(N0 +Nm−1)N2

m +N2
m−1Nm

W All +N0Nm−1Nm +Nm−1Nm +N0Nm−1Nm −N2
m + 2N0Nm Nm(3Nm − 1)/2

+
∑m−1

i=2 {2N2
i−1Ni +Ni−1N

2
i +Nm−1Nm +Nm +

∑m−1
i=2 {2Ni−1N

2
i

+N0Ni−1Ni + 4Ni−1Ni + 2Ni} +N0(Ni−1 − 1)Ni −N2
i +Ni}

∑m−1
i=1 {nQ( 13

6
N3

i + 3
2
N2

i + 1
3
Ni − 2)

∑m−1
i=1 {nQ( 13

6
N3

i −N2
i − 1

6
Ni + 1)

Global −N3
i + 3N0N2

i +N0NiNi+1 +N2
i } −N3

i + 3N0N2
i +N0NiNi+1

∑m−1
i=1 {nQ(Ni − 1)}

+
∑m−2

i=1 {NiNi+1 +Ni+1} −N2
i −N0Ni −Ni}∑m−1

i=1 {nQ( 13
6
N3

i + 3
2
N2

i + 1
3
Ni − 2)

∑m−1
i=1 {nQ( 13

6
N3

i −N2
i − 1

6
Ni + 1)

λ Local −N3
i + 3N0N2

i +N0NiNi+1 +N2
i } −N3

i + 3N0N2
i +N0NiNi+1

∑m−1
i=1 {nQ(Ni − 1)}

+
∑m−2

i=1 {NiNi+1 +Ni+1} −N2
i −N0Ni −Ni}

Individual
∑m−1

i=1 {N0N2
i +N0NiNi+1 +N2

i +N0Ni}
∑m−1

i=1 {N0N2
i +N0NiNi+1 −N2

i −Ni}
+

∑m−2
i=1 {NiNi+1 +Ni+1}

Global
∑m−1

i=1 {Ni(Ni − 1)(4Ni + 1)/6 +N2
i + 1}

∑m−1
i=1 {Ni(Ni − 1)(4Ni + 1)/6 +N2

i }
∑m−1

i=1 {Ni(3Ni − 1)/2}

a Local
∑m−1

i=1 {Ni(Ni − 1)(4Ni + 1)/6 +N2
i + 1}

∑m−1
i=1 {Ni(Ni − 1)(4Ni + 1)/6 +N2

i }
∑m−1

i=1 {Ni(3Ni − 1)/2}

Individual 2
∑m−1

i=1 Ni
∑m−1

i=1 Ni
∑m−1

i=1 Ni

TABLE IV
COMPUTATIONAL COMPLEXITY PER ITERATION OF THE JOINT MSR DESIGNS

Power Constraint Multiplications Additions Divisions

nQ( 13
6
N3

m + 3
2
N2

m + 1
3
Nm − 2) nQ( 13

6
N3

d −N2
d − 1

6
Nd + 1)

Local +Nm(Nm − 1)(4Nm + 1)/6 +N2
m +N1Nm +Nm(Nm − 1)(4Nm + 1)/6 nQ(Nm − 1)

QR Algorithm +
∑m−1

i=1 {NiN
2
m +NiNi+1 +Ni} −N2

m +N1Nm +
∑m−1

i=1 NiN
2
m +Nm(3Nm − 1)/2

+
∑m−1

i=2 {2N2
i−1Ni +Ni−1N

2
i +

∑m−1
i=2 {2Ni−1N

2
i

+Ni−1NiNm + 4Ni−1Ni + 2Ni} +Ni−1(Ni − 1)Nm −N2
i +Ni}

w
nPN2

m +Nm(Nm − 1)(4Nm + 1)/6 nPNm(Nm − 1)
Local +N3

m +N2
m +N1Nm +Nm(Nm − 1)(4Nm + 1)/6 +N3

m

Power Method +
∑m−1

i=1 {NiN
2
m +NiNi+1 +Ni} −2N2

m +N1Nm +
∑m−1

i=1 NiN
2
m Nm(3Nm − 1)/2

+
∑m−1

i=2 {2N2
i−1Ni +Ni−1N

2
i +

∑m−1
i=2 {2Ni−1N

2
i

+Ni−1NiNm + 4Ni−1Ni + 2Ni} +Ni−1(Ni − 1)Nm −N2
i +Ni}

∑m−1
i=1 {nQ( 13

6
N3

i + 3
2
N2

i + 1
3
Ni − 2)

∑m−1
i=1 {nQ( 13

6
N3

i −N2
i − 1

6
Ni + 1)

Local +Ni(Ni − 1)(4Ni + 1)/6 +Ni(Ni − 1)(4Ni + 1)/6 +NiNi+1
∑m−1

i=1 {nQ(Ni − 1)

QR Algorithm +
∑i

k=1 NkN
2
i + 3N2

i + 2NiNi+1 +Ni+1Nm −Ni+1 +Ni − 1} +Ni(3Ni − 1)/2}
+Ni+1Nm + 3Ni + 2}+ 2N2

m +
∑m−1

i=2 {
∑i−1

k=1(Nk − 1)N2
i +Nm +m− 1

a +N2
i (i− 2) +Ni}+ 2N2

m − 2Nm∑m−1
i=1 {nPN2

i

∑m−1
i=1 {nPNr(Nr − 1)

Local +Ni(Ni − 1)(4Ni + 1)/6 +Ni(Ni − 1)(4Ni + 1)/6 +N3
i

∑m−1
i=1 {Ni(3Ni − 1)/2}

Power Method +
∑i

k=1 NkN
2
i +N3

i + 3N2
i + 2NiNi+1 −N2

i +NiNi+1 +Ni+1Nm −Ni+1 +Nm +m− 1

+Ni+1Nm + 3Ni + 2}+ 2N2
m +Ni − 1}+

∑m−1
i=2 {

∑i−1
k=1(Nk − 1)N2

i
+N2

i (i− 2) +Ni}+ 2N2
m − 2Nm

is a nonempty set, and d is a metric on M, i.e., a function
d : M×M → R such that for any x, y, z ∈ M, the following
conditions hold:

1) d(x, y) ≥ 0.
2) d(x, y) = 0 iff x = y.
3) d(x, y) = d(y, x).
4) d(x, y) ≤ d(x, y) + d(y, z).

The Hausdorff distance measures how far two subsets of a
metric space are from each other and is defined by

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

(62)

The proposed joint MMSE designs can be stated as an
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Fig. 3. Number of multiplications versus the number of relay nodes of
our proposed joint MMSE design of the receiver and the power allocation
strategies.
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Fig. 4. Number of multiplications versus the number of relay nodes of our
proposed joint MSR design of the receiver and the power allocation strategies.

alternating minimization strategy based on the MSE defined
in (9) and expressed as

Wn ∈ arg min
W∈Wn

MSE(W, ai,n−1), (63)

ai,n ∈ arg min
a∈ai,n

MSE(Wn, ai) for i = 1, 2, ...,m− 1 (64)

where the sets W, ai ⊂ M, and the sequences of compact
sets {Wn}n≥0 and {ai,n}n≥0 converge to the sets W and ai,
respectively.

Although we are not given the sets W and ai directly, we
have the sequence of compact sets {Wn}n≥0 and {ai,n}n≥0.
The aim of our proposed joint MMSE designs is to find a
sequence of Wn and ai,n(i = 1, 2, ...,m− 1) such that

lim
n→∞

MSE(Wn, a1,n, a2,n, ..., am−1,n)

= MSE(Wopt, a1,opt, a2,opt, ..., am−1,opt)
(65)

where Wopt and ai,opt correspond to the optimal values of

Wn and ai,n, respectively. Equation (65) can be considered as
the necessary condition of the following equations

lim
n→∞

MSE(Wn, ai,n) = MSE(Wopt, ai,opt)

for i = 1, 2, ...,m− 1
(66)

if the other power allocation parameters aj,n(j ̸= i) are
kept constant when computing ai,n during the iterations. To
present a set of sufficient conditions under which the proposed
algorithms converge, we need the so-called three-point and
four-point properties [21], [22]. Let us assume that there is a
function f : M×M → R such that the following conditions
are satisfied:

1) Three-point property (W, W̃, ai):
For all n ≥ 1, W ∈ Wn, ai ∈ ai,n−1, and
W̃ ∈ argminW∈Wn

MSE(W, ai), we have

f(W, W̃) +MSE(W̃, ai) ≤ MSE(W, ai). (67)

2) Four-point property (W, ai, W̃, ãi):
For all n ≥ 1, W, W̃ ∈ Wn, ai ∈ ai,n, and
ãi ∈ argminai∈ai,n MSE(W̃, ai), we have

MSE(W, ãi) ≤ MSE(W, ai) + f(W, W̃). (68)

These two properties are the mathematical expressions of the
sufficient conditions for the convergence of the alternating
minimization algorithms which are stated in [21] and [22].
It means that if there exists a function f(W, W̃) with the
parameter W during two iterations that satisfies the two
inequalities for the MSE in (67) and (68), the convergence of
our proposed MMSE designs that make use of the alternating
minimization algorithm can be proved by the theorem below.

Theorem: Let {(Wn, ai,n)}n≥0, W, ai be compact subsects
of the compact metric space (M, d) such that

Wn
dH→ W ai,n

dH→ ai (69)

and let MSE : M × M → R be a continuous function. Let
conditions 1) and 2) hold. Then, for the proposed algorithms,
we have

lim
n→∞

MSE(Wn, ai,n) = MSE(Wopt, ai,opt)

for i = 1, 2, ...,m− 1.
(70)

Thus, equation (65) can be satisfied. A general proof of this
theorem is detailed in [21] and [22]. The proposed joint
MSR designs can be stated as an alternating maximization
strategy based on the SR defined in (47) that follows a similar
procedure to the one above.

VI. SIMULATIONS

In this section, we assess the performance of our proposed
joint designs of the linear receiver and power allocation
methods and compare them with the equal power allocation
method which allocates the same transmitting power level
equally for all links from the relay nodes. For the purpose
of fairness, we assume that the total transmitting power for
all relay nodes in the network is the same which can be
indicated as

∑m−1
i=1 PT,i =

∑m−1
i=1

∑Ni

j=1 PT,i,j = PT . We



consider a 3-hop (m=3) wireless sensor network as an example
even though the algorithms can be used with any number
of hops. The number of source nodes (N0), two groups of
relay nodes (N1, N2) and destination nodes (N3) are 1, 4, 4
and 2, respectively. We consider an AF cooperation protocol.
The quasi-static fading channel (block fading channel) is
considered in our simulations whose elements are Rayleigh
random variables (with zero mean and unit variance) and
assumed to be invariant during the transmission of each packet.
In our simulations, the channel is assumed to be known
at the destination nodes. For channel estimation algorithms
for WSNs and other low-complexity parameter estimation
algorithms, one refers to [32] and [33]. During each phase,
the sources transmit the QPSK modulated packets with 1500
symbols. The noise at the destination nodes is modeled as
circularly symmetric complex Gaussian random variables with
zero mean. A perfect (error free) feedback channel between
destination nodes and relay nodes is assumed to transmit the
amplification coefficients.

For the MMSE design, it can be seen from Fig. 5 that
our three proposed methods achieve a better performance than
the equal power allocation method. Among them, the method
with a global constraint has the best performance whereas the
method with individual constraints has the worst performance.
This result is what we expect because a global constraint
provides the largest degrees of freedom for allocating the
power among the relay nodes whereas an individual constraint
provides the least. For the MSR design, it can be seen from
Fig. 6 that our proposed method achieves a better sum-rate
performance than the equal power allocation method. Using
the power method to calculate the dominant eigenvector yields
a very similar result to the QR algorithm but requires a lower
complexity.

0 1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Equal Power Allocation
Individual Constraints (Perfect Feedback Channel)
Local Constraints (Perfect Feedback Channel)
Global Constraint (Perfect Feedback Channel)
Individual Constraints (BSC 8bits Pe=10e−3)
Local Constraints (BSC 8bits Pe=10e−3)
Global Constraint (BSC 8bit Pe=10e−3)

Fig. 5. BER performance versus SNR of our proposed joint MMSE design
of the receiver and power allocation strategies, compared to the equal power
allocation method.

Besides the equal power allocation scheme, a MMSE power
allocation scheme reported in [34] where only the local power
constraints are considered has also been used for comparison.
It can be seen from Fig. 7 that our proposed MMSE and
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Fig. 6. Sum-rate performance versus SNR of our proposed joint MSR design
of the receiver and power allocation strategies with local constraints, compared
to the equal power allocation method.

MSR designs can achieve a very similar or better performance.
Further advantage is that our proposed schemes only optimize
the relay amplifying vectors (or diagonal matrices) whereas in
[34] the optimal relay amplifying matrices are needed which
requires more feedback transmissions as well as information
exchanges among relay nodes in each group. Note that in order
to have a fair comparison, we only employ power allocation
schemes for the relay nodes and assume every source node
has unit transmitting power in the simulations.
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Fig. 7. (a) BER performance versus SNR of our proposed MMSE design (b)
Sum-rate performance versus SNR of our proposed MSR design with local
power constraints and compare with the power allocation scheme in [34] and
equal power allocation scheme.

In practice, the feedback channel cannot be error free. In
order to study the impact of feedback channel errors on the
performance, we employ the binary symmetric channel (BSC)
as the model for the feedback channel and quantize each
complex amplification coefficient to an 8-bit binary value (4
bits for the real part, 4 bits for the imaginary part). The error
probability (Pe) of the BSC is fixed at 10−3. The dashed
curves in Fig. 5 and Fig. 6 show the performance degradation



compared to the performance when using a perfect feedback
channel. To show the performance tendency of the BSC for
other values of Pe, we fix the SNR at 10 dB and choose Pe
ranging from 0 to 10−2. The performance curves are shown in
Fig. 8 and Fig. 9 , which illustrate the BER and the sum-rate
performance versus Pe of our two proposed joint designs of
the receivers. It can be seen that along with the increase in
Pe, their performance becomes worse.
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Fig. 8. BER performance versus Pe of our proposed MMSE designs when
employing the BSC as the model for the feedback channel.
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Fig. 9. Sum-rate performance versus Pe of our proposed MSR design when
employing the BSC as the model for the feedback channel.

Finally, we replace the perfect CSI with the estimated
channel coefficients to compute the receive filters and power
allocation parameters at the destinations. We employ the
BEACON channel estimation which was proposed in [32].
Fig. 10 illustrates the impact of the channel estimation on
the performance of our proposed MMSE and SMR design
with local constraints by comparing it to the performance of
perfect CSI. The quantity nt denotes the number of training
sequence symbols per data packet. Please note that in these
simulations perfect feedback channel is considered and the QR
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Fig. 10. (a) BER performance versus SNR of our proposed MMSE design (b)
Sum-rate performance versus SNR our proposed MSR design with local power
constraints when employing the BEACON channel estimation, compared to
the performance of perfect CSI

algorithm is used in the MSR design. For both the MMSE and
MSR designs, it can be seen that when nt is set to 10, the
BEACON channel estimation leads to an obvious performance
degradation compared to the perfect CSI. However, when nt is
increased to 50, the BEACON channel estimation can achieve
a similar performance to the perfect CSI. Other scenarios and
network topologies have been investigated and the results show
that the proposed algorithms work very well with channel
estimation algorithms and a small number of training symbols.

VII. CONCLUSIONS

In this paper, we have presented alternating optimization
algorithms for receive filter design and power adjustment
which can be applied to general multihop WSNs. MMSE
and MSR criteria have been considered in the development
of the algorithmic solutions. Simulations have shown that our
proposed algorithms achieve a significant better performance
than the equal power allocation and power allocation scheme
in [34]. A possible extension of this work is employing low-
complexity adaptive algorithms to compute the linear receiver
and power allocation parameters. The algorithms can also be
employed in other multihop wireless networks along with non-
linear receivers.

APPENDIX

Here, we derive the the expressions of Fi, E(yiyHi ), and
E(yisH) that are used in Section II, III and VI. It holds that

Fi = diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni |2)}−
1
2 (71)

where

E(|xi,j |2 =


σ2
s |hs,j |2 + σ2

n, for i = 1,
hi−1,jAi−1E(yi−1yHi−1)A

H
i−1hH

i−1,j + σ2
n,

for i = 2, 3, ...,m,
(72)



E(yiy
H
i ) =


Fi(σ

2
sHsHH

s + σ2
nI)FH

i , for i = 1,
Fi[Hi−1,iAi−1E(yi−1yH

i−1)A
H
i−1HH

i−1,i + σ2
nI]FH

i

for i = 2, 3, ...,m,
(73)

E(yis
H) =

{
σ2
sFiHs, for i = 1,

FiHi−1,iAi−1E(yi−1sH), for i = 2, 3, ...,m.
(74)
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