
1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TWC.2015.2396052, IEEE Transactions on Wireless Communications

1

Optimum Power Allocation in Sensor Networks
for Active Radar Applications

Gholamreza Alirezaei, Member, IEEE, Omid Taghizadeh, Student Member, IEEE,
and Rudolf Mathar, Member, IEEE

Abstract—We investigate the power allocation problem in
distributed sensor networks that are used for target object clas-
sification. In the classification process, the absence, the presence,
or the type of a target object is observed by the sensor nodes
independently. Since these local observations are noisy and thus
unreliable, they are fused together as a single reliable observation
at a fusion center. The fusion center uses the best linear unbiased
estimator in order to accurately estimate the reflection coefficient
of target objects. We utilize the average deviation between the
estimated and the actual reflection coefficient as a metric for
defining the objective function. First, we demonstrate that the
corresponding optimization of the power allocation leads to a
signomial program which is in general quite hard to solve.
Nonetheless, by using the proposed system model, fusion rule and
objective function, we are able to optimize the power allocation
analytically and can hence present a closed-form solution. Since
the power consumption of the entire network may be limited
in various aspects, three different cases of power constraints are
discussed and compared with each other. In addition, a sensitivity
analysis of the optimal power allocation with respect to perfect
and imperfect parameter knowledge is worked out.

Index Terms—Analytical power allocation, energy-efficient
optimization, distributed target classification, network resource
management, information fusion.

I. INTRODUCTION

IN this paper, we investigate the power allocation problem
in distributed sensor networks that are used for active radar

applications. Each sensor node (SN) individually and indepen-
dently emits a radar signal and receives the reflected echo from
a jointly observed target object. The particular observations
serve as classification feature in order to classify the type
of the present target object. Since the local observations at
each SN are noisy and thus unreliable, they are combined
into a single reliable observation at a remotely located fusion
center to increase the overall system performance. In the
classification process, the absence, the presence, and the type
of the present target object are distinguished. The fusion center
uses the best linear unbiased estimator in order to accurately
estimate the reflection coefficient of the present target object,
where each object is assumed to be uniquely characterized by
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Fig. 1. Abstract representation of the distributed sensor network.

its reflection coefficient. This setup is illustrated in Figure 1,
whose technical components will be specified in detail later.

The research on distributed detection was originated from
the attempt to combine signals of different radar devices [1].
Currently, distributed detection is rather discussed in the
context of wireless sensor networks, where the sensor units
may also be radar nodes [2]–[4]. In [5], the power alloca-
tion problem for distributed wireless sensor networks, which
perform object detection and classification, is only treated for
ultra-wide bandwidth (UWB) technology. Other applications,
which require or benefit from detection and classification
capabilities, are localization and tracking [6] or through-wall
surveillance [7]. In [8], an approximate solution of the power
allocation problem is proposed, which allows for an analyt-
ical treatment of output power-range limitation per sensor
node. The optimal power allocation in passive radar systems,
instead of active systems, is investigated in [9]. For active
radar systems an optimal solution to the power allocation
problem is only known for high signal-to-noise ratios (SNRs),
see [10]. However, a closed-form optimal solution to the power
allocation problem has not yet been investigated in the context
of object classification for the whole range of SNR. The main
difficulty for optimizing the power consumption is associated
with finding a closed-form equation for the overall classifi-
cation probability. As example, for the Bayesian hypothesis
test criterion the overall classification probability cannot be
analytically evaluated [11]. This limits the usability of this
criterion for solving the power allocation problem. Bounds,
such as the Bhattacharyya bound [12], are also difficult to
use for optimizing multidimensional problems. Hence, the best
power allocation scheme is still an open problem in order to
improve the overall classification probability.

In the present work, we analytically optimize the power
allocation and hence can present a closed-form solution for
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a network of amplify-and-forward SNs. Based on a simple
system model, we apply a linear fusion rule and utilize the
average deviation between the estimated and the actual reflec-
tion coefficient as a metric for defining the objective function.
This approach is the key idea in the present work which
enables the analytical optimization of the power allocation
in closed-form. Since the power consumption of the entire
network may be limited in various aspects, three different cases
of power constraints are discussed and compared with each
other. They lead to explicit policies for the optimal power
allocation. Furthermore, we demonstrate that all considered
constraints lead to signomial optimization problems which are
in general quite hard to solve. In addition, we simulatively
analyze the sensitivity of the optimal objective with respect to
perfect parameter knowledge and subsequently with respect
to imperfect channel state information. These are the main
contributions of the current work.

The present work is organized as follows. We start with a de-
scription of the underlying technical system in the next section.
Subsequently, the power allocation problem is specified and
analytically solved. The achieved results are then discussed
and carefully compared with each other. Finally, simulative
results are presented and their behavior is described.

Mathematical Notations:

Throughout this paper we denote the sets of natural, integer,
real, and complex numbers by N, Z, R, and C, respectively.
The imaginary unit is denoted by j . Note that the set of natural
numbers does not include the element zero. Moreover, R+

denotes the set of non-negative real numbers. Furthermore, we
use the subset FN ⊆ N which is defined as FN := {1, . . . , N}
for any given natural number N . We denote the absolute
value of a real or complex-valued number z by |z| while
the expected value of a random variable v is denoted by
E [v]. Moreover, the notation V ? stands for the optimal value
of an optimization variable V at an optimum point of the
corresponding optimization problem.

II. OVERVIEW AND TECHNICAL SYSTEM DESCRIPTION

At any instance of time, a network of K ∈ N independent
and spatially distributed SNs receives random observations. If
a target object is present, then the received power at the SN
Sk is a part of its own emitted power which is back-reflected
from the jointly observed target object and is weighted by
its reflection coefficient ri. The object may be of I different
types. It should be noted that sheer detection may be treated
as the special case of I = 2 which corresponds to the decision
‘some object is present’ versus ‘there is no object’. We assume
that all different object types and their corresponding reflection
coefficients are known by the network. Moreover, the received
signal at each SN is weighted by the corresponding channel
coefficient and disturbed by additive noise. It is obvious that
the sensing channel is wireless. The sensing task and its
corresponding communication task for a single classification
process are performed in consecutive time slots. All SNs
take samples from the disturbed received signal and amplify
them without any additional data processing in each time slot.

Fig. 2. System model of the distributed active sensor network.

The amplified samples remain buffered in the SNs during the
current time slot. Simultaneously in the same time slot, new
radio waves are emitted by all SNs for the next observation
and classification process. In addition, the buffered samples
of the former classification process are communicated to
the fusion center which is placed in a remote location. We
assume that SNs have only limited sum-power available for
sensing the object and communicating to the fusion center.
Furthermore, each SN may be limited in its transmission
power-range due to transmission-power regulation standards
or due to the functional range of its circuit elements. The
sensing task as well as the communication to the fusion center
are performed by using distinct waveforms (pulse shapes) for
each SN so as to distinguish sensing and communication of
different SNs. Each waveform has to be suitably chosen in
order to suppress inter-user (inter-node) interference at other
SNs and also at the fusion center. Furthermore, we assume
that in the frequency domain each waveform is orthogonal to
all other waveforms in order to calculate the sensing power of
each SN independent from its communication power. Hence,
the K received signals at the fusion center are uncorrelated and
assumed to be conditionally independent. Each received signal
at the fusion center is influenced by the corresponding channel
coefficient and additive noise, as well. The communication
channel between the SNs and the fusion center can either be
wireless or wired. The disturbed received signals at the fusion
center are weighted and combined together in order to obtain a
single reliable observation r̃ of the actual reflection coefficient
ri. Note that we disregard time delays within all transmissions
and assume synchronized data communication.

In the following subsections, we mathematically describe
the underlying system model that is depicted in Figure 2.
The continuous-time system is modeled by its discrete-time
equivalent, where the sampling rate of the corresponding
signals is equal to the target observation rate, for the sake
of simplicity.

A. Target Object

We assume that all objects have the same size, shape and
alignment, but different material and, hence, complex-valued
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reflection coefficients ri ∈ C, i ∈ FI . Thus, the reflection
coefficients are the only recognition features in this work.
The a-priori probability of occurrence for each object type
is denoted by πi ∈ R+, i ∈ FI , with

∑I
i=1 πi = 1. The root

mean squared value of the reflection coefficients is given as

rrms :=

√∑
i∈FI

πi |ri|2 . (1)

Furthermore, the actual target object is assumed to be static
during consecutive observation steps.

B. Sensing channel

Each propagation path of the sensing channel, from each
SN to the object and again back to the same SN, is described
by a corresponding random channel coefficient gk. For the
investigation of the power allocation problem, the concrete
realization of channel coefficients is needed and hence can be
used for postprocessing of the received signals at the SNs. We
assume that all channel coefficients are complex-valued and
static during each target observation step. Furthermore, the
coherence time of sensing channels is assumed to be much
longer than the whole length of the classification process.
Thus, the expected value and the quadratic mean of each
coefficient during each observation step can be assumed to
be equal to their instantaneous values, i.e., E [gk] = gk and
E [|gk|2] = |gk|2. In practice, it is often difficult to measure or
estimate these coefficients. Thus, the results of the present
work are applicable for scenarios where all channel coef-
ficients can somehow be accurately estimated during each
observation process or they are nearly deterministic and thus
can be measured before starting the radar task.

Furthermore, all channel coefficients are assumed to be
uncorrelated and jointly independent. Note that each channel
coefficient includes the radar cross section, the influence of
the antenna, the impact of the filters, as well as all additional
attenuation of the target signal.

At the input of each SN, the disturbance is modeled by the
complex-valued additive white Gaussian noise (AWGN) mk

with zero mean and finite variance M0 := E [|mk|2] for all k.
Note that the channel coefficient and the noise on the same
propagation path are also uncorrelated and jointly independent.

C. Sensor nodes

We model each SN by an amplify-and-forward unit with
extended capabilities, where both sensing and communication
signals are transmitted simultaneously. The sensing signal wk,
without loss of generality, is assumed to be non-negative, real-
valued and deterministic. The expected value of its sensing
power is then described by

Wk := E [|wk|2] = |wk|2 , k ∈ FK . (2)

Note that the specific value of wk is adjustable and will be
determined later by the power allocation procedure.

The ratio of the communication signal to the received signal
is described by the non-negative real-valued amplification
factor uk which is assumed to be constant over the whole

bandwidth and power-range. Thus, the communication signal
and the expected value of its communication power are de-
scribed by

xk := (rigkwk +mk)uk , k ∈ FK (3)

and

Xk := E [|xk|2] = (r2
rms|gk|2Wk +M0)u2

k , k ∈ FK , (4)

respectively. The amplification factor is an adjustable param-
eter and will be determined later by the power allocation
procedure, as well. Note that the instantaneous power fluctu-
ates from observation to observation depending on the present
target object.

If the received signal is negligible in comparison to the out-
put signal and if the nodes have smart power components with
low-power dissipation loss, then the average power consump-
tion of each node is approximately equal to its average output
power Wk +Xk. The addition of both transmission powers
is justified because the corresponding signals are assumed to
be separated by distinct waveforms. We also assume that the
output power-range of each SN is limited by Pmax and that the
average power consumption of all SNs together is limited by
the sum-power constraint Ptot. Hence, the constraints

Wk +Xk ≤ Pmax

⇔
(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k ≤ Pmax , k ∈ FK (5)

and∑
k∈FK

Wk︸︷︷︸
Radar task

+ Xk︸︷︷︸
Data communication︸ ︷︷ ︸

Average transmission power of one sensor for a single observation

≤ Ptot

⇔
∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k ≤ Ptot (6)

arise consequently. We remark that the described method can
also be extended to individual output power-range constraints
per SN.

Note that the sum-power constraint Ptot is a reasonable
approach to compare energy-efficient radar systems.

D. Communication channel

Analogous to the sensing channel, each propagation path of
the communication channel is described by a corresponding
random channel coefficient hk. But in contrast to the sens-
ing channel, the concrete realization of each communication
channel coefficient is measurable by using pilot sequences at
each SN. Accordingly, the channel coefficients can be used
for postprocessing of received signals at the fusion center. We
assume that all channel coefficients are complex-valued and
static during each target observation step. Furthermore, the
coherence time of communication channels is also assumed
to be much longer than the whole length of the classification
process. Thus, the expected value and the quadratic mean of
each channel coefficient can be assumed to be equal to their
instantaneous values, i.e., E [hk] = hk and E [|hk|2] = |hk|2.
Furthermore, all channel coefficients are assumed to be un-
correlated and jointly independent. Note that each channel
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coefficient includes the influence of the antenna, the impact
of the filters, as well as all additional attenuation of the
corresponding sensor signal.

At the input of the fusion center, the disturbance on
each communication path is modeled by the complex-valued
AWGN nk with zero mean and finite variance N0 := E [|nk|2]
for all k. Note that the channel coefficient and the noise on
the same propagation path are also uncorrelated and jointly
independent.

E. Fusion center

The fusion center combines the different local observations
into a single reliable one by applying a linear combiner. Thus,
the received signals are weighted with the complex-valued
factors vk and summed up to yield an estimate r̃ of the actual
target signal ri. In this way, we obtain

yk := (xkhk + nk)vk , k ∈ FK , (7)

and hence,

r̃ :=
∑
k∈FK

yk = ri
∑
k∈FK

wkgkukhkvk+
∑
k∈FK

(mkukhk+nk)vk .

(8)
Note that each weight can be written as vk = |vk| exp(jϑk),

k ∈ FK , where ϑk is a real-valued number which represents
the phase of the corresponding weight.

Note that the fusion center can separate the input streams
because the communication channel is either wired or the data
communication is performed by distinct waveforms for each
SN. Consequently, if the communication channel is wireless
then a matched-filter bank is essential at the input of the fusion
center to separate the data streams of different SNs. In addi-
tion, we do not consider inter-user (inter-node) interferences
at the fusion center because of the distinct waveform choices.

In order to obtain a single reliable observation at the fusion
center, the value r̃ should be a good estimate for the present
reflection coefficient ri. Thus, we optimize the sensing power
Wk, the amplification factors uk, and the weights vk in order
to minimize the average absolute deviation between r̃ and the
true reflection coefficient ri. This optimization procedure is
elaborately explained in the next section. After determining
Wk, uk and vk, the fusion center observes a disturbed version
of the true reflection coefficient ri at the input of its decision
unit. Hence, by using the present system model, we are able to
separate the power allocation problem from the classification
problem and optimize both independently.

F. Some remarks on the system model

All described assumptions are necessary to obtain a frame-
work suitable for analyzing the power allocation problem,
without studying detection, classification and estimation prob-
lems in specific systems and their settings.

The accurate estimation of all channel coefficients is nec-
essary for both the radar process and the power allocation.
Sometimes it is not possible to estimate the transmission
channels; consequently the channel coefficients gk and hk
remain unknown. In such cases, the radar usually fails to
perform its task.

TABLE I
NOTATION OF SYMBOLS THAT ARE NEEDED FOR THE DESCRIPTION OF

EACH OBSERVATION PROCESS.

Notation Description
K number of all nodes;
FK the index-set of K nodes;
K̃ number of all active nodes;
K the index-set of all active nodes;
I number of different reflection coefficients;
ri reflection coefficient of ith target object;
rrms root mean squared absolute value of reflection coefficients;
r̃ estimate of the actual reflection coefficient ri;

gk , hk complex-valued channel coefficients;
mk , nk complex-valued zero-mean AWGN;
M0, N0 variances of mk and nk;
uk , vk non-negative amplification factors and complex-valued

weights;
ϑk phase of vk;
φk phase of the product gk · hk;

wk , xk sensing and communication signal of kth sensor node;
Wk , Xk sensing and communication power of kth sensor node;
yk input signals of the combiner;
Pmax output power-range constraint of each sensor node;
Ptot sum-power constraint.

Since the channel coefficients gk are in practice difficult to
estimate or to determine, our approach rather shows theoretical
aspects of the power allocation than the practical realization
and implementation. Hence, the presented results act as theo-
retical bounds and references for comparing real radar systems.

Moreover, since the coherence time of communication chan-
nels as well as sensing channels is assumed to be much
longer than the whole length of the classification process,
the proposed power allocation method is applicable only for
scenarios with slow-fading channels.

Note that only the linear fusion rule together with the
proposed objective function enable optimizing the power al-
location in closed-form. The optimization of power allocation
in other cases is in general hardly amenable analytically.

In general, SNs have only one power amplifier and a single
antenna. The antenna is usually connected to a circulator in
order to separate the signal of the transmitter to the antenna
from the signal of the antenna to the receiver, which is not
depicted in Figure 2. The power amplifier is also shared for
sensing and communication tasks, but not considered in this
work.

In order to increase the available power-range at each
SN, time-division multiple-access (TDMA) can be used to
completely separate the sensing task from the communication
task and perform each task in a different time slot.

The introduced system model describes a baseband commu-
nication system without considering time, phase and frequency
synchronization problems.

In order to distinguish the current operating mode of each
SN in what follows, we say a SN is inactive or idle if the
allocated power is zero. We say a SN is active if its allocated
power is positive. Finally, we say a SN is saturated if the
limitation of its output power-range is equal to the allocated
power, i.e., Pmax = Wk +Xk.

An overview of all notations that we will use hereinafter and
are needed for the description of each observation process is
depicted in Table I.
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III. POWER ALLOCATION

In this section, we introduce the power optimization prob-
lem and consecutively present its analytical solutions for dif-
ferent power constraints. First, we investigate the case where
only a sum-power constraint Ptot ∈ R+ for the cumulative
sum of the expected power consumption of each SN is given.
Afterwards, we present the analytical solution of the power
allocation problem for the case where the average transmission
power of each SN is limited by the output power-range
limitation Pmax ∈ R+. Finally, we extend the power allocation
problem to the case where both constraints simultaneously
hold and present the corresponding optimal solution.

In general, the objective is to maximize the overall classifi-
cation probability, however, a direct solution to the allocation
problem does not exist, since no analytical expression for
the overall classification probability is available. Instead, we
minimize the average deviation between r̃ and ri, in order to
determine the power allocation. The motivation for this method
is the separation of the power allocation problem from the
object classification procedure, as described in the last sec-
tion. The corresponding optimization problem is elaborately
described in the next subsection.

A. The optimization problem

As mentioned in the last section, the value r̃ should be
a good estimate for the actual reflection coefficient rk of the
present target object. In particular, we aim at finding estimators
r̃ of minimum mean squared error in the class of unbiased
estimators for each i.

The estimate r̃ is unbiased simultaneously for each i if
E [r̃ − ri] = 0, i.e., from equation (8) with (2) we obtain the
identity ∑

k∈FK

√
Wk gkukhkvk = 1 . (9)

This identity is our first constraint in what follows. Note that
the mean of the second sum in (8) vanishes since the noise
is zero-mean. Furthermore, we do not consider the impact of
both random variables gk and hk as well as their estimates in
our calculations because the coherence time of both channels
is assumed to be much longer than the target observation time.
Note that equation (9) is complex-valued and may be separated
as ∑

k∈FK

√
Wk uk |vkgkhk| cos(ϑk + φk) = 1 (10)

and ∑
k∈FK

√
Wk uk |vkgkhk| sin(ϑk + φk) = 0 , (11)

where ϑk and φk are phases of vk and gkhk, respectively.
The objective is to minimize the mean squared error

E [|r̃ − ri|2]. By using equation (8) and the identity (9) we
may write the objective function as

V := E
[
|r̃ − ri|2

]
=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
. (12)

Note that (12) is only valid if mk and nk are white and jointly
independent.

As mentioned in the last section, each SN has an output
power-range limitation and the expected overall power con-
sumption is also limited. Hence, the objective function is
also subject to (5) and (6), which are our second and last
constraints, respectively.

In summary, the optimization problem is to minimize the
mean squared error in (12) with respect to uk, vk, and Wk,
subject to constraints (5), (6), (10) and (11).

Note that each resulting optimization problem is a signomial
program, which is a generalization of geometric programming,
and is thus non-convex in general [13]. Furthermore, it is
important to note that signomial programs cannot be trans-
formed in general into convex optimization problems [14].
Since we have not found any transformation from signomials
into corresponding convex programs thus far, we hence apply
the general method of Lagrangian multipliers with equality
constraints to solve all optimization problems in the present
work, see [15, pp. 321–358] and [16, pp. 275–368]. In order to
ensure the global optimality of our results, we consecutively
show the following four steps during each solving procedure.
First, we relax each problem into an optimization problem with
extended ranges for all involved variables to ensure an opti-
mization within the interior-set. Second, all stationary points
of the associated Lagrangian are localized by considering
the corresponding derivatives to obtain necessary conditions.
Third, we show that the number of stationary points is equal
to one, which indirectly implies that the considered stationary
point is also a regular point for all (active) constraints.
Finally, to obtain a sufficient condition, we then show that the
stationary point has a convex neighborhood which corresponds
with a minimum. In summary, the applied method is based on
the regularity of all active constraints as well as first and sec-
ond order optimality conditions which together guarantee for
global optimality. At this point, we emphasize that obtaining
global optimality is similarly achievable by applying vector
space methods [17], using interval analysis [18], or utilizing
a proper constraint qualification (CQ) together with Karush-
Kuhn-Tucker conditions (KKT) [19].

B. Power allocation subject to the sum-power constraint
In this case, the output power-range constraint per SN is

assumed to be greater than the sum-power constraint and thus
does not have any effect on the optimization problem, because
the feasible set of the optimization problem is only limited
by the sum-power constraint. This leads to the corresponding
constrained Lagrange function (relaxation with respect to the
range of Wk, uk and |vk|)

L1(Wk, uk, vk; η1, η2, τ ; ξ) :=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
+

(
1−

∑
k∈FK

√
Wkuk |vkgkhk| cos(ϑk + φk)

)
η1

−
( ∑
k∈FK

√
Wkuk |vkgkhk| sin(ϑk + φk)

)
η2

+

(
Ptot − ξ −

∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ ,

(13)



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TWC.2015.2396052, IEEE Transactions on Wireless Communications

6

where η1, η2 and τ are Lagrange multipliers while ξ is a slack
variable.

In order to satisfy (11), all phases ϑk + φk have to be equal
to qkπ, qk ∈ Z, for all k ∈ FK . If there were a better solution
for ϑk + φk, then the first partial derivatives of L1 with respect
to ϑk would vanish at that solution, due to the continuity of
trigonometric functions. But the first derivatives would lead
to the equations η1 sin(ϑk + φk) = η2 cos(ϑk + φk) which
cannot simultaneously satisfy both equations (10) and (11)
for all η1 and η2. Thus, qkπ is the unique solution. Hence, we
may consequently write a modified Lagrange function as

L̃1(Wk, uk, |vk| , qk; η1, τ ; ξ)

:=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
+

(
1−

∑
k∈FK

√
Wkuk |vkgkhk| cos(qkπ)

)
η1

+

(
Ptot − ξ −

∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ .

(14)

At any stationary point of L̃1 the first partial derivatives of
L̃1 with respect to Wk, uk, |vk|, η1 and τ must vanish, if they
exist. For all l ∈ FK , this leads to

∂L̃1

∂Wl
=− ul |vlhlgl| cos(qlπ)

2
√
Wl

η1

−
(
1 + r2

rms|gl|2u2
l

)
τ = 0 , (15)

∂L̃1

∂|vl|
= 2|vl|

(
u2
l |hl|2M0 +N0

)
−
√
Wlul |hlgl| cos(qlπ)η1 = 0 , (16)

∂L̃1

∂ul
= 2|vl|2ul|hl|2M0 −

√
Wl |vlhlgl| cos(qlπ)η1

− 2ul(Wlr
2
rms|gl|2 +M0)τ = 0 , (17)

∂L̃1

∂η1
= 1−

∑
k∈FK

√
Wkuk|vkgkhk| cos(qkπ) = 0 (18)

and
∂L̃1

∂τ
= Ptot − ξ −

∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k = 0 .

(19)

By multiplying (16) with |vl|, summing up the outcome over
all l, and using the identities (10) and (12), we obtain

η1 = 2V (20)

which is a positive real number due to definition of V . Because
of the last relationship and according to (16), the value of
cos(qlπ) must be a positive number and hence each ql must
be an even integer number. Thus, we can choose q?l = 0 for
all l ∈ FK and conclude

ϑ?l = −φl , l ∈ FK . (21)

This solution gives the identity cos(q?l π) = 1 which can be
incorporated into (15), (16), (17) and (18).

Again by multiplying (16) with

1

2

ul|hlgl|
√
Wl

ul|hl|2M0 +N0
, (22)

summing up the outcome over all l, and using (10), (12)
and (20), we obtain

V =
η1

2
=

[ ∑
k∈FK

u2
k|hkgk|2Wk

u2
k|hk|2M0 +N0

]−1

. (23)

In turn, by incorporating (23) into (16), it yields

|vl| =
V ul|hlgl|

√
Wl

u2
l |hl|2M0 +N0

(24)

for all l ∈ FK .
Note that for each feasible ul and Wl, l ∈ FK , equa-

tion (24) describes a feasible value for each |vl|. Since for
each ulWl > 0 the relation |vl| > 0 consequently follows,
the feasible optimal values of each |vl| > 0 are not on the
boundary |vl| = 0. Thus, finding optimal values for each ul
and Wl, l ∈ FK , leads to optimum values for each |vl|,
l ∈ FK , due to the convexity of (14) with respect to each
|vl|. Hence, finding a unique global optimum for ul and Wl,
l ∈ FK , yields the sufficient condition for the globally optimal
solution of the minimization problem (14).

We replace each |vl| in (15) and (17) with (24) and thus we
obtain two equations for τ as

τ =
−V 2u2

l |glhl|2(
1 + u2

l r
2
rms|gl|2

)(
u2
l |hl|2M0 +N0

) (25)

and

τ =
−V 2Wl|glhl|2N0(

Wlr2
rms|gl|2 +M0

)(
u2
l |hl|2M0 +N0

)2 . (26)

Note that because of the negativity of τ , due to (25) or (26),
and positivity of η1, the Lagrangian (14) is also convex in both
ul and Wl, l ∈ FK , as well. Hence, this Lagrangian is convex
near any optimum/stationary point in each ul, |vl| and Wl, but
it seems not to be a jointly convex function, at all. Since this
Lagrangian is separately convex in each direction, a possible
stationary point can never be a maximum. As the derivatives
in (15)–(19) are linear or at most quadratic separately for each
variable, we will see later that only a single feasible stationary
point exists.

For the sake of simplicity and in order to compare the results
later on, we define new quantities as

αk :=
M0

r2
rms|gk|2

⇒ αk ∈ R+ , (27)

βk :=
N0

|hk|2
⇒ βk ∈ R+ , (28)

and

ũk := M0u
2
k ⇔ uk = +

√
ũk
M0

. (29)

By direct algebra from (25) and (26), we infer

Wl =
ũlαl(ũl + βl)

αlβl − ũ2
l

, l ∈ FK . (30)
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To satisfy the positivity of each Wl, the inequality

αlβl > ũ2
l , l ∈ FK , (31)

must hold, which will be used later. By using (27)–(30), we
may rewrite (19) and (23) as

1 = (Ptot − ξ)

[ ∑
k∈FK

ũ2
k(αk + βk) + 2ũkαkβk

αkβk − ũ2
k︸ ︷︷ ︸

=:γk

]−1

(32)

and

V −1 =
1

r2
rms

∑
k∈FK

ũ2
k

αkβk − ũ2
k

(33)

respectively. In turn, we incorporate (32) into (33) and infer

V −1 =
Ptot − ξ

r2
rms
∑
k∈FK

γk

∑
k∈FK

γkũk
ũk(αk + βk) + 2αkβk

. (34)

As is well-known, the arithmetic mean in (34) is less than its
greatest element such that the inequality

V −1 ≤ Ptot − ξ
r2

rms
max
k∈FK

{ ũk
ũk(αk + βk) + 2αkβk

}
(35)

arises consequently. It is obvious that (35) is strictly decreasing
with respect to ξ. Thus, the optimal value for the slack variable
is zero, i.e., ξ? = 0. In (35), equality holds, if and only if, some
elements are zero and all other ones are equal. In addition, it
is obvious that (35) is strictly increasing in each ũk and in
turn the maximum value of a certain ũk is achieved if for all
l 6= k, l ∈ FK , the identity ũl = 0 holds, since the sum-power
is kept constant. This means that only one SN is active and
all other ones are idle. Hence, we can calculate the value of
the corresponding ũk from (32) as

ũk =

√( αkβk
αk + βk + Ptot

)2

+
αkβkPtot

αk + βk + Ptot

− αkβk
αk + βk + Ptot

.

(36)

This value can be incorporated into (35) to obtain

V −1 =
P 2

tot

r2
rms

max
k∈FK

{ 1

c2k(Ptot)− P 2
tot

}
(37)

with the disturbance-intensity1

ck(P ) :=
√
αkβk+

√
(αk + P )(βk + P ) , k ∈ FK , P ∈ R+ .

(38)
The value of V −1 is maximal if the disturbance-intensity
ck(Ptot) is minimal. Hence, we re-index all SNs such that the
inequality chain

ck(Ptot) ≤ ck+1(Ptot) , k ∈ FK−1 , (39)

holds and with that only the first SN is active, even if the first
few disturbance-intensities are equal. From (24), (29), (30),

1We give the name disturbance-intensity to ck because it behaves intrinsi-
cally like a metric for noise. Since 1/ck also describes the quality of the kth

SN, it can be interpreted as its reliability, see [20].

(36) and (37) we thus conclude

V ? =
r2

rms

P 2
tot

(
c21(Ptot)− P 2

tot

)
, (40)

ũ?1 =

√( α1β1

α1 + β1 + Ptot

)2

+
α1β1Ptot

α1 + β1 + Ptot

− α1β1

α1 + β1 + Ptot
, (41)

u?1 =

√
ũ?1
M0

, (42)

W ?
1 =

ũ?1α1(ũ?1 + β1)

α1β1 − (ũ?1)2
, (43)

|v?1 | =
V ?ũ?1

rrms|h1|
√
ũ?1 + β1

√
α1β1 − (ũ?1)2

, (44)

and

|v?k| = W ?
k = u?k = 0 , k ∈ FK , k 6= 1 . (45)

As mentioned before, the Lagrangian (14) is separately
convex in each direction, such that possible stationary points
cannot be maximum ones. On the other hand, as shown
in (40)–(45), there exists only a single feasible solution for
the set of derivatives in (15)–(19). This means that only a
single stationary point exists which cannot be a maximum. To
be a saddle point is also not possible, because then there would
at least exist one additional stationary point which is not the
case here. Thus, the Lagrangian (14) must actually be a jointly
convex function in the neighborhood of its stationary point.
Furthermore, since the number of stationary points is equal
to one, all equality (active) constraints are regular. Hence, the
separate convexity together with the regularity condition is
even a sufficient condition for global optimality in the present
case, see also [15]. Note also that all above results are the
solution of the relaxed Lagrangian (13) with extended range
of all variables, and nevertheless this solution coincides with
the original range of all variables.

Note that by using the above results, the corresponding
fusion rule is simplified by discarding the influence of inactive
SNs from the fusion rule. The fusion rule (8) becomes

r̃ = y1 = ri + (m1h1u
?
1 + n1)v?1 , i ∈ FI . (46)

The equations (40)–(45) and (21) are the optimal solutions
of the power allocation problem only subject to the sum-power
constraint. They are hence the main contribution of the present
subsection.

C. Power allocation subject to individual power constraints

In the current case, the sum-power constraint is assumed to
be much greater than the output power-range constraint and
thus does not have any effect on the optimization problem,
because the feasible set of the optimization problem is only
limited by the output power-range constraints. This leads to
the corresponding constrained Lagrange function (relaxation
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with respect to the range of Wk, uk and |vk|)

L2(Wk, uk, vk; η1, η2, λk; %k)

:=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
+

(
1−

∑
k∈FK

√
Wkuk |vkgkhk| cos(ϑk + φk)

)
η1

−
( ∑
k∈FK

√
Wkuk |vkgkhk| sin(ϑk + φk)

)
η2

+
∑
k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk ,

(47)

where λk are new Lagrange multipliers while %k are new slack
variables.

Since the behavior of L2 is identical to that of L1 with
respect to |vk| and ϑk, we obtain the same results for the
phases as given in (21). Hence, we may modify L2 as

L̃2(Wk, uk, |vk| ; η1, λk; %k)

:=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
+

(
1−

∑
k∈FK

√
Wkuk |vkgkhk|

)
η1

+
∑
k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk .

(48)

Note that since the equality sin(ϑ?k + φk) = 0 holds due
to (21), the constraint (11) is discarded in (48).

At any stationary point of L̃2 the first partial derivatives of
L̃2 with respect to Wk, uk, |vk|, η1 and λk must vanish, if
they exist. For all l ∈ FK , this leads to

∂L̃2

∂Wl
=− ul|vlhlgl|

2
√
Wl

η1 −
(
1 + u2

l r
2
rms|gl|2

)
λl = 0 , (49)

∂L̃2

∂ |vl|
= 2 |vl|

(
u2
l |hl|2M0 +N0

)
−
√
Wlul|hlgl|η1 = 0 ,

(50)

∂L̃2

∂ul
= 2|vl|2ul|hl|2M0 −

√
Wl|vlhlgl|η1

− 2ul
(
Wlr

2
rms|gl|2 +M0

)
λl = 0 , (51)

∂L̃2

∂η1
= 1−

∑
k∈FK

√
Wkuk |vkgkhk| = 0 (52)

and

∂L̃2

∂λl
=Pmax − %l −

(
1 + r2

rms|gl|2u2
l

)
Wl −M0u

2
l = 0 .

(53)

By similar procedure as described in Subsection III-B, we
obtain the same results as given in (23), (24) and (30), because
the equations (49)–(52) and (15)–(18) are pairwise the same
except of the difference between τ and λl. On the one hand,
incorporating Wl from (53) into (23), and using the same

definition as in (27)–(29), lead to

V −1 =
1

r2
rms

∑
k∈FK

ũk(Pmax − %k − ũk)

(ũk + αk)(ũk + βk)
, (54)

which is obviously strictly decreasing with respect to each
%k. Thus, the optimal value for each slack variable is zero,
i.e., %?k = 0 for all k ∈ FK . On the other hand, comparing Wl

from (53) with (30), leads to

ũ?k =

√( αkβk
αk + βk + Pmax

)2

+
αkβkPmax

αk + βk + Pmax

− αkβk
αk + βk + Pmax

, k ∈ FK .
(55)

Since equation (54) is strictly increasing in the number K of
SNs and (55) holds for all SNs, we infer that all SNs are active.
From (24), (29), (30), (38), (54) and (55) we thus conclude

V ? =

[
P 2

max

r2
rms

∑
k∈FK

1

c2k(Pmax)− P 2
max

]−1

, (56)

u?k =

√
ũ?k
M0

, k ∈ FK , (57)

W ?
k =

ũ?kαk(ũ?k + βk)

αkβk − (ũ?k)2
, k ∈ FK , (58)

and

|v?k| =
V ?ũ?k

rrms|hk|
√
ũ?k + βk

√
αkβk − (ũ?k)2

, k ∈ FK . (59)

As mentioned in Subsection III-B, the global optimality of
the obtained results is also trivially reasoned, first because of
the optimization of the relaxed Lagrange function (47) with ex-
tended range of all variables, second since the global optimum
point of the relaxed problem coincides with the original range
of all variables, and finally there exists only a single stationary
point which has a jointly convex neighborhood corresponding
to a minimum and satisfying the regularity condition.

Note that by using the above results, the corresponding
fusion rule cannot be simplified, since all SNs are active and
they cannot thus be discarded from the fusion rule.

The equations (55)–(59) and (21) are the optimal solution of
the power allocation problem only subject to the output power-
range constraint per SN. They are hence the main contribution
of the present subsection.

D. Comparison of the solutions

As we have shown in Subsection III-B, the SN with the
smallest ck(Ptot) consumes the whole available sum-power
Ptot, because the combination of its sensing and commu-
nication channel is the best compared to other SNs. All
other SNs do not get any transmission power, since their
information reliability is too poor to be considered for data
fusion. They can be discarded from the fusion rule such that
the observation of the target object is less interfered by noise
and consequently results in a better data communication. Note
that the information reliability of each SN is only determined
by the value of its corresponding ck(Ptot).

In contrast, if the transmission power of each SN is indi-
vidually limited and no sum-power constraint is given, then



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TWC.2015.2396052, IEEE Transactions on Wireless Communications

9

all SNs are active and their transmission power is equal to the
output power-range constraint Pmax, according to (53). In order
to compare both methods from Subsection III-B and III-C,
the values in (40) and (56) are needed. Note that for a fair
comparison of both allocation methods in a certain scenario,
an equal overall power is necessary, i.e., Ptot = KPmax.

Note that r̃ is an unbiased estimator for each ri due to
constraint (9). By similar methods we can also minimize the
mean squared error in both cases without restricting ourself to
unbiased estimators. Obviously, the optimal value of V will
then be smaller than that in (40) or (56).

E. Power allocation subject to both types of constraints

In the current subsection, we consider the optimization
problem from Subsection III-A subject to all constraints, i.e.,
sum-power constraint as well as output power-range constraint
per SN. Two of three different cases can be singled out and
reduced to preceding instances.

First, if KPmax < Ptot, then the sum-power constraint is
irrelevant, because the feasible set is only limited by the output
power-range constraints. Hence, the power allocation problem
reduces to the one described in Subsection III-C with results
given in (55)–(59) and (21). The only difference is that a part
of the available sum-power remains unallocated and cannot be
used.

Secondly, if Ptot ≤ Pmax, then the output power-range con-
straints are irrelevant, because the feasible set is only limited
by the sum-power constraint. Hence, the power allocation
problem is equal to the one described in Subsection III-B. The
corresponding results are described by (40)–(45) and (21).

The case of Pmax < Ptot ≤ KPmax is most challenging. The
amount of the available sum-power is possibly inadequate to
supply all SNs with power Pmax. Besides, it is not possible
to allocate the available sum-power only to a single SN since
Pmax < Ptot. Hence, it will be shown that for the optimal solu-
tion only a subset of K̃ ≤ K, K̃ > 1, SNs are active. Similar
to the procedures in the previous subsections, we consider the
corresponding constrained Lagrange function (relaxation with
respect to the range of Wk, uk and |vk|)

L3(Wk, uk, vk; η1, η2, τ, λk; ξ, %k)

:=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
+

(
1−

∑
k∈FK

√
Wkuk |vkgkhk| cos(ϑk + φk)

)
η1

−
( ∑
k∈FK

√
Wkuk |vkgkhk| sin(ϑk + φk)

)
η2

+

(
Ptot − ξ −

∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ

+
∑
k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk .

(60)

Since the behavior of L3 is identical to that of L1 and L2

with respect to |vk| and ϑk, we obtain the same results for the

phases as given in (21). Hence, we may modify L3 as

L̃3(Wk, uk, |vk| ; η1, τ, λk; ξ, %k)

:=
∑
k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
+

(
1−

∑
k∈FK

√
Wkuk |vkgkhk|

)
η1

+

(
Ptot − ξ −

∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ

+
∑
k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk .

(61)

Note that since the equality sin(ϑ?k + φk) = 0 holds due
to (21), the constraint (11) is discarded in (61).

At any stationary point of L̃3 the first partial derivatives of
L̃3 with respect to Wk, uk, |vk|, η1, τ and λk must vanish, if
they exist. For all l ∈ FK , this leads to

∂L̃3

∂Wl
=− ul|vlhlgl|η1

2
√
Wl

−
(
1+u2

l r
2
rms|gl|2

)
(τ+λl)=0, (62)

∂L̃3

∂ |vl|
= 2 |vl|

(
u2
l |hl|2M0 +N0

)
−
√
Wlul|hlgl|η1 = 0 ,

(63)

∂L̃3

∂ul
= 2|vl|2ul|hl|2M0 −

√
Wl|vlhlgl|η1

− 2ul
(
Wlr

2
rms|gl|2 +M0

)
(τ + λl) = 0 , (64)

∂L̃3

∂η1
= 1−

∑
k∈FK

√
Wkuk |vkgkhk| = 0 , (65)

∂L̃3

∂τ
= Ptot − ξ −

∑
k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k = 0

(66)
and
∂L̃3

∂λl
= Pmax − %l −

(
1 + r2

rms|gl|2u2
l

)
Wl −M0u

2
l = 0 .

(67)

By the same method as described in Subsection III-B, we
obtain the same results as given in (23), (24) and (30), because
the equations (62)–(66) and (15)–(19) are pairwise the same
except of the difference between τ and τ + λl. According
to (67), we are able to calculate the powers Wl in terms of
%l and ul. By using the same definition as in (27)–(29) and
incorporating (30), (38) and (67) into (23) and (66), we derive

V −1 =
1

r2
rms

∑
k∈FK

1(
ck(Pmax−%k)
Pmax−%k

)2

− 1
(68)

and
Ptot − ξ =

∑
k∈FK

(Pmax − %k) . (69)

As one can see, the minimization of the signomial program
in (60) is reduced to the maximization of (68) subject to (69)
and 0 ≤ %k ≤ Pmax < Ptot for all k ∈ FK with respect to
each %k. Since the new maximization problem is of special
structure, it is amenable to an optimal solution with the aid of
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monotonicity and convexity of the objective (68) with respect
to each Pmax − %k. The first derivative of ck(P )

P with respect
to P leads to

d

dP

ck(P )

P
= − P (αk + βk) + 2αkβk

2P 2
√

(αk + P )(βk + P )
−
√
αkβk
P 2

, (70)

which is obviously negative for all positive P . Thus, ck(P )
P

is strictly decreasing in P , and in turn, the objective in (68)
is strictly decreasing in each %k. To show the convexity more
effort is needed. Since each element of the series (68) is equal
to

1(
ck(P )
P

)2

− 1
=

(√
αkβk −

√
(αk + P )(βk + P )

)2 − P 2

(αk − βk)2
,

(71)
the second derivative of each element is given by

√
αkβk

2
√

(αk + P )3(βk + P )3
> 0 , P ∈ R+ . (72)

From this result, the objective in (68) is convex, and even
jointly convex, with respect to each %k. Since the objective
is convex and strictly decreasing with respect to each %k, a
stationary point on the range 0 < %k < Pmax cannot exist. If
there were a stationary point defined by (%̃1, %̃2, %̃3, . . . , %̃K),
then the addition of an ε > 0 to the slack variable %̃k1 , which
has the smallest slope among all considered slack variables,
and subtraction of the same amount ε from the slack variable
%̃k2 , which has the greatest slope among all considered slack
variables, would lead to a greater value of the objective, be-
cause of its monotonicity and convexity. However, this would
contradict the existence of a stationary point on the range
0 < %k < Pmax. Hence, the optimization of the maximization
problem yields a unique optimal value for each slack variable
on the boundary of its feasible set. Furthermore, the optimal
solution for the slack variable ξ is zero, i.e., ξ? = 0, due
to increasing property of the objective (68) with respect to
the number of SNs. This means that the first K̃ − 1 SNs
operate on Pmax, the K̃ th SN operates on the remaining power
Premain := Ptot − (K̃ − 1)Pmax with 0 < Premain ≤ Pmax, while
all other SNs stay idle. Consequently, the optimal power
allocation method is simply described as follows.

First, all SNs are re-indexed to satisfy the inequality chain

ck(Pmax) ≤ ck+1(Pmax) , k ∈ FK−1 . (73)

In turn, the first K̃ − 1 SNs are kept fix while the remaining
SNs are re-indexed again to satisfy the inequality chain

ck(Premain) ≤ ck+1(Premain) , k ∈ FK−1 \ FK̃−1 . (74)

Then, we can conclude

(%?1, . . . , %
?
K̃−1

, %?
K̃
, %?
K̃+1

, . . . , %?K)

= (0, . . . , 0, Pmax − Premain, Pmax, . . . , Pmax) . (75)

From (24), (29), (30), (38), (67) and (68), we infer

V ?

r2
rms

=

[
1(

cK̃(Premain)

Premain

)2

− 1
+

K̃−1∑
k=1

1(
ck(Pmax)
Pmax

)2

− 1

]−1

,

(76)

ũ?k =

√( αkβk
αk + βk + Pmax

)2

+
αkβkPmax

αk + βk + Pmax

− αkβk
αk + βk + Pmax

, k ∈ FK̃−1 , (77)

ũ?
K̃

=

√( αK̃βK̃
αK̃ + βK̃ + Premain

)2

+
αK̃βK̃Premain

αK̃ + βK̃ + Premain

−
αK̃βK̃

αK̃ + βK̃ + Premain
, (78)

u?k =

√
ũ?k
M0

, k ∈ FK̃ , (79)

W ?
k =

ũ?kαk(ũ?k + βk)

αkβk − (ũ?k)2
, k ∈ FK̃ , (80)

|v?k| =
V ?ũ?k

rrms|hk|
√
ũ?k + βk

√
αkβk − (ũ?k)2

, k ∈ FK̃ , (81)

and
|v?k| = W ?

k = u?k = 0 , k ∈ FK \ FK̃ . (82)

The number K̃ of active SNs results from the inequality
0 < Premain ≤ Pmax, that must be fulfilled for the last SN,
and is given by the smallest integer number for which the
inequality

K̃ ≥ Ptot

Pmax
(83)

holds.
Note that because of the same argumentation as in Sub-

section III-B and III-C, the global optimality of the obtained
results is ensured.

Note that in the considered case, the fusion rule may be
more complicated than in (46), since more SNs are active
in general. On the other hand, the fusion rule may be less
complicated than that from Subsection III-C, because not all
SNs are possibly active.

In summary, equations (75)–(83) and (21) are the optimal
solution to the power allocation problem subject to both types
of constraints. They are hence the main contribution of the
present subsection.

F. Discussion of the solutions

In the case Pmax < Ptot ≤ KPmax from Subsection III-E
the overall system performance is reduced because of two
reasons. First, the SNR of each SN is reduced compared to the
results from Subsection III-B, due to the output power-range
limitation by Pmax < Ptot. Second, not all SNs can in general
be active, due to the sum-power limitation by Ptot ≤ KPmax,
such that the system performance is weaker compared to the
results of Subsection III-C. Hence, the value in (76) is in
general greater than those in (40) and (56). This behavior is
not surprising and the performance reduction was predictable,
since we have included more restrictions into the optimization
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problem. To mention is, that for the general case described in
Subsection III-E, we are analytically able to find relationships
in closed-form between the disturbance-intensity of each SN,
the geographical placement of the corresponding SN, and its
operating mode, see [21] and [20] for more information.

In practice, the value of each ck is in general unique such
that the inequality chain ck < ck+1 for all k ∈ FK−1 holds. In
this case, the optimal value of the objective (76) is decreasing
with respect to both Ptot and Pmax. If Pmax is fixed and Ptot
varies in the range Pmax ≤ Ptot ≤ KPmax, then the optimal
value of the objective (76) is decreasing with respect to Ptot
because the SNR of the whole sensor network is increasing
with Ptot. The best situation is achieved only when all SNs
are active, i.e., Ptot = KPmax. In contrast, if Ptot is fixed and
Pmax varies in the range 1

KPtot ≤ Pmax ≤ Ptot, then the optimal
value of the objective (76) is decreasing with respect to Pmax
because the capability of each SN is increasing with Pmax. The
best situation is achieved only when a single SN is active, i.e.,
Pmax = Ptot.

In a practical application, the value of Pmax is fixed and
Ptot can suitably be adjusted within the extended range
0 < Ptot ≤ KPmax. In order to save energy, the value of Ptot
should be as small as possible, which means that a single
SN or only a few SNs are active. On the other hand, to
accurately estimate additional quantities such as position,
velocity, acceleration, angle of movement, and other important
properties and parameters of the target object, more than few
SNs are needed to be active. Hence, if the number K̃ of active
SNs is satisfactory in order to accurately estimate all important
parameters of the target, then the best energy-aware value of
Ptot is equal to K̃Pmax. In turn, the value of Pmax should be
large enough to achieve a desired classification or detection
probability. With this setup, all three system parameters K̃,
Pmax and Ptot are optimally determined for an energy-aware
system design.

Note that all solutions from Subsections III-B, III-C
and III-E are different to the well-known water-filling solution,
see [22]. The difference to the water-filling solution emerges
from the fact that the information flow over each effective
path, consisting of a single SN, its sensing channel, the modest
signal processing of the same SN, and its communication
channel followed by the associated weight in the fusion center,
is adjustable due to the power optimization. Thus, on the one
hand, the diversity of each effective path is not predetermined
such that the water-filling solution cannot hold in its general
form. On the other hand, the diversity of best effective paths
is amplified in comparison to the diversity of poorest effective
paths because of the optimal solution to the power allocation.

G. Numerical verification
The main difficulty of dealing with optimization problems

like (13), (47) and (60) is the absence of a specific math-
ematical structure, e.g., monotonicity, convexity and higher
order properties. In order to prove or show global optimality,
a considerable effort is thus needed for all aforementioned
optimization problems, see [23]. In this subsection we present
an equivalent numerical method to verify our previous analyt-
ical solutions in a simple way. In particular, the optimization

problem considered in (60) is rewritten such that to obtain a
sequential convex program (SCP), which in turn can easily be
solved by standard numerical tools like MATLAB R© [24] with
the aid of CVX [25]. Our approach is based on the substitution
of all variables by

uk = eu
′
k , |vk| = ev

′
k , |wk| = ew

′
k , (84)

where all new variables are real valued. Then an equivalent
optimization problem of (61) is given by

minimize
u′
k
,v′

k
,w′

k
∈R

∑
k∈FK

e2v′k
(
e2u′k |hk|2M0 +N0

)
,

s. t.
∑
k∈FK

eu
′
k+v′k+w′k |gkhk| = 1 ,∑

k∈FK

(
1 + r2

rms|gk|2e2u′k
)
e2w′k +M0e2u′k ≤ Ptot ,(

1 + r2
rms|gk|2e2u′k

)
e2w′k +M0e2u′k ≤ Pmax ∀k ,

(85)

where the equality constraint is not an affine function. To con-
vexify the above problem, we linearize the equality constraint
and obtain the SCP

minimize
u′
k,n

,v′
k,n

,w′
k,n

∑
k∈FK

e2v′k,n
(
e2u′k,n |hk|2M0 +N0

)
,

s. t.
∑
k∈FK

eδk,n−1
(
1 + δk,n − δk,n−1

)
|gkhk| = 1 ,∑

k∈FK

(
1 + r2

rms|gk|2e2u′k,n
)
e2w′k,n +M0e2u′k,n ≤ Ptot ,(

1 + r2
rms|gk|2e2u′k,n

)
e2w′k,n +M0e2u′k,n ≤ Pmax ∀k ,

(86)

where the auxiliary variable δk,n := u′k,n + v′k,n + w′k,n is
used. The counting index n ∈ N represents thereby the nth

solution of the SCP (86) with arbitrary feasible initial-values
u′k,0, v′k,0 and w′k,0. The value of the objective after the nth

iteration is denoted by Vn. For sufficiently large n and an
accurate choice of initial-values, we expect that the solution
of (86) converges to the solutions derived in Subsection III-E
which means Vn −→

n 7→∞
V ?. In the next section we will discuss

these solutions.

IV. SENSITIVITY ANALYSIS AND NUMERICAL RESULTS

In this section, we first compare the analytical solution
of the objective (76) with the numerical computation of the
equivalent SCP (86). Afterwards, we simulatively investigate
the behavior of the optimal value in (76) with respect to
σ2
g := E [|gk|2], σ2

h := E [|hk|2], M0 and N0. Subsequently,
we analyze the sensitivity of a sensor network, which is
indeed designed by the optimal power allocation strategy
from Subsection III-E, but with an imperfect knowledge of
the actual channel-state. In particular, we investigate different
independent cases, where both estimates ĝk := gk + ∆gk and
ĥk := hk + ∆hk are used instead of gk and hk, respectively,
in order to re-design the sensor network. We compare then
the optimal value in (76) of the sensor network with optimal
known parameters to the conditional mean square error (MSE)

V̂ := E
[
|r̃ − ri|2 | ∆gk,∆hk

]
(87)
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Fig. 3. The behavior of V ? from equation (76) with respect to Ptot is
visualized together with the numerical results obtained by computation of
the SCP (86). All curves show a decreasing property in Ptot. The reference
curve has the default parameters σ2

g = 2, σ2
h = 2, M0 = 2 and N0 = 2. The

results of the SCP for sufficiently large number of iterations are equivalent to
the closed-form solutions.

of the same re-designed sensor network with imperfect infor-
mation. In general, the estimate r̃ in (87) is biased compared
to the case with perfect information, i.e., E [r̃ − ri] 6= 0. In ad-
dition, the selection of most reliable SNs is no longer ensured.
Hence, the value in (87) is mostly greater than that of (76),
see also the definition (12). Furthermore, due to inaccurate
knowledge of sensing and communication channels, the given
power constraints may be violated in the erroneous design.
All these effects are equivalently relevant for a discussion
and comparison. Since an analytical comparison seems to be
out of reach, we set out to use numerical methods to obtain
the sensitivity analysis and visualize corresponding simulation
results.

In order to fairly compare all results, we simulate a reference
curve for each figure. All reference curves are based on
parameters under consideration with default values given in
Table II. Unless otherwise stated, we usually create a new
curve only by changing the value of a single parameter. The
specific new value of that parameter is noted in the legend of
the corresponding figure.

TABLE II
DEFAULT VALUES USED FOR EACH REFERENCE CURVE.

K r2
rms σ2

g σ2
h σ2

∆g σ2
∆h M0 N0 Pmax Ptot

20 1 2 2 0 0 2 2 2 10

A. Verification of analytical and numerical solutions

In Figure 3, both analytical and numerical results for
the optimal objective respectively obtained by (76) and (86)
are presented. The SCP is calculated with three criteria of
termination. The first one is a minimum number of iterations
n ≥ 8. The second criterion is a feasibility check, fulfilled by
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0
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Fig. 4. Behavior of V ? with respect to σ2
g . All curves show a decreasing

property in σ2
g . The reference curve has the default parameters σ2

h = 2,
M0 = 2 and N0 = 2.

|1−
∑
k∈FK

eδk,n−1
(
1 + δk,n − δk,n−1

)
|gkhk| | ≤ 10−4. The

last one is a check of convergency and is determined by the
relative value condition |Vn − Vn−5| ≤ Vn · 10−3. All above
criteria are based on experience in this field. Furthermore, each
SCP point is calculated with three randomly and independently
generated initial-values, where at the end of each three runs
the best achieved result is depicted. Since the precision of the
numerical solutions are very high, due to the strict termination
criteria from above, all SCP points fall onto the analytical
curves. This coincidence reinforces the statement for global
optimality of the analytical results on the one hand, and the
convergence of the numerical method on the other hand.

Since the solution of the SCP in (86) is highly computa-
tionally intensive and its results do not show any additional
information, we omit this computation and its corresponding
results in the remaining part of this paper.

B. Behavior of V ?

By considering (38) we see that the disturbance-intensity
ck(P ) is symmetric in αk and βk and hence the optimum
value V ? in (76) is also symmetric in each αk and βk. Thus,
changing the roles of each pair gk and M0 with each pair hk
and N0 results in the same value for V ? while keeping rrms =
1 constant. Because of this fact it is enough to investigate the
behavior of V ? only with respect to σ2

g and M0 while σ2
h,

N0 and rrms are kept constant. All random processes gk, hk,
∆gk, ∆hk, mk and nk are randomly generated with zero mean
Gaussian distributions for each simulation step. The random
process ri is randomly generated with a uniform distribution
on {−1, 1} in each simulation step. All other parameters are
kept constant. We apply a Monte-Carlo simulation, where the
number of parameter realizations for each simulation point is
always 100000. The same simulation setup is also applied for
all results in the next subsection.

In Figure 4, the decreasing property of V ? with respect to
the variance σ2

g of all sensing channels is shown. The reason
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Fig. 5. Behavior of V ? with respect to M0. All curves show an increasing
property in M0. The reference curve has the default parameters σ2

g = 2,
σ2
h = 2 and N0 = 2.

behind the decreasing property is that the whole network
observes the target object more reliable in case where the
variance of sensing channels is higher. Furthermore, it can
be seen that increasing N0 has an equivalent effect on the
objective as decreasing σ2

h and vice versa. It is also interesting
to note that the objective shows highest sensitivity to the
variation of M0 when the sensing channel is rather weak
(small σ2

g). The observed sensitivity is illustratively reduced
for higher variances of the sensing channel. Furthermore, the
objective attains a more or less constant value for very high
variances of the sensing channel. The reason is that the resulted
objective is dominated by the quality of the communication
channel when the sensing channel gets stronger.

In Figure 5 it is shown that in contrast to the curves in
Figure 4, the property of V ? is increasing with respect to
the noise power M0. For small values of M0 all curves
have a square root property while for large values of M0 all
curves behave linear. The deviation of all curves is greater
for large values of M0 than for small values. Furthermore,
the value of M0 has more impact on the deviation of V ?

caused by σ2
g than by other parameters, as mentioned before.

As already described for Figure 4, increasing N0 is equivalent
to decreasing σ2

h and vice versa.

C. Sensitivity of V̂

A sensitivity analysis of V̂ is very important in order to
justify assumptions concerning the channel-state knowledge.
In Figure 6, we consider the case where the error variance
σ2

∆g := E [|∆gk|2] of estimated sensing channels is greater than
or equal to zero. In the case where σ2

∆g is equal to zero,
the identity V̂ = V ? holds. Otherwise, V̂ is always greater
than V ?, i.e., V̂ (σ2

∆g) ≥ V̂ (0). All curves pass through three
different regions whereas only the first and the second region
are visible in Figure 6. In the first region, i.e., for low values
of σ2

∆g , all curves are slowly increasing. The selection of
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Fig. 6. Behavior of V̂ with respect to σ2
∆g . All curves show an increasing

property in σ2
∆g . The reference curve has the default parameters σ2

g = 2,
σ2
h = 2, M0 = 2 and N0 = 2.

most reliable SNs is still mostly ensured in the first region
while the optimal power allocation is no longer insured. In
the second region, i.e., for mid-range values of σ2

∆g , all curves
are rapidly increasing since the correct sensor selection gets
out of control. In the last region, i.e., for high values of σ2

∆g ,
all curves are linearly increasing. In this region the optimal
sensor selection almost always fails. This means that SNs are
randomly selected and the allocated power is also random.
The increasing property (not constant) of all curves in the
third region is comparable with the increasing property in the
first region, because the roles of gk and ∆gk are exchanged.
The system is then designed by ∆gk instead of gk and thus gk
itself acts as an estimation error of ∆gk. In summary, the best
operation region of the proposed system is the first region in
which σ2

∆g � σ2
g holds, while a system operation in the third

region, for which σ2
∆g � σ2

g holds, should be avoided.
As can also be seen, the deterioration of the performance is

not only amplified by high noise powers M0 and N0, but also
by low channel variances σ2

g and σ2
h. The form of the curves

is mainly dominated and prescribed by the channel variance
σ2
g . All curves in the middle of the figure run almost parallel

because the variance σ2
g of all those curves is the same.

V. CONCLUSION

The main contribution of the present work is to present an
optimal solution to the power allocation problem in distributed
active multiple-radar systems subject to different power con-
straints. We have introduced a system model, a linear fusion
rule and a simple objective function, which enable us to solve
the power allocation problem analytically. Three different
cases of power constraints have been investigated. For a limi-
tation of transmission power per sensor node and a sum-power
limitation as well as their combination, we have analytically
obtained optimal solutions in closed-form. Furthermore, all
proposed solutions are valid for AWGN channels as well as
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for frequency-flat slow-fading channels, provided that channel
state information is available at each receiver. In addition, we
have discussed the sensitivity of the derived optimal power
allocation with respect to perfect and imperfect parameter
knowledge. In this way, we have shown that the optimal power
allocation is robust against small inaccuracies in the channel
state information.
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